
Confidential Data Inside Encypted VMs

Dario Faggioli Virtualization SW. Eng. @ SUSE

✓ dfaggioli@opensuse.org

- # dariof
- 🥑 @DarioFaggioli
- m @dfaggioli:matrix.org

DATI A CHI?

About Myself

- Living:
 - Empoli (FI)
 - <u>about.me/dario.faggioli</u>
- FLOSS
 - LUG: <u>GOLEM</u> ... all the times I can ;-P
 - openSUSE: user & contributor
- Education
 - 2008, Ph.D, <u>ReTiS Lab</u>, <u>Scuola Sant'Anna</u> Real-Time System, Linux kernel scheduling
- Work
 - Since 2018, Virtualization Software Engineer @ <u>SUSE</u>
 <u>Xen</u>, <u>Linux kernel</u>, <u>KVM</u>, <u>OEMU</u>, <u>Libvirt</u>
 Working on scheduling, performance evaluation & tuning</u>

Confidential Computing

- What?
 - Keep [your] data confidential ~= secret
- From whom?
 - From everyone!
- How?
 - Encryption
- When?
 - Always

Encrypted Data

When? \Rightarrow Always!

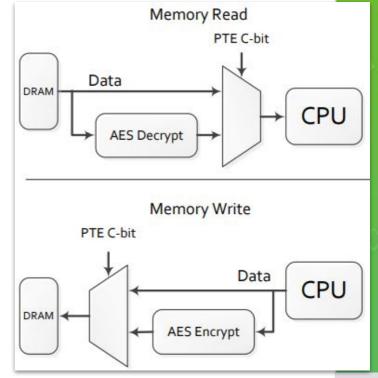
- when data are stored on a hard drive
 - disk encryption (dm_crypt, ...)
 - available since long time
- when data transit over networks
 - secure network comm. protocols (TLS, VPNs, ...)
 - available since long time

Encrypted Data

- When? \Rightarrow Always
- while sitting in the PC memory (RAM) ?
 - Err... Mmm...
- while being processed on the CPU?
 Mmm... Err...

New technologies implemented by various HW vendors to address this

Encrypting The Memory Live



DATI A CHI?

WWW.LINUXDAY.IT

In new enough (see later) AMD CPUs

- AMD Secure Processor
 - Additional ARM [®] Cortex [®] chip
 - Encrypt / Decrypt memory accesses on-the-fly
 - AES, 128 bit keys

- AMD MEMORY ENCRYPTION
- EXTENDING SECURE ENCRYPTED VIRTUALIZATION WITH SEV-ES
- <u>AMD-SEV SNP: Strengthening VM Isolation with Integrity</u>
 <u>Protection and More</u>

Encrypt Data in Memory / CPU

New technologies implemented by HW vendors

- AMD:
 - SME: <u>Secure Memory Encryption</u>
 - SEV: <u>Secure Encripted Virtualization</u>
 - SNP: <u>Secure Nested Paging</u>
- Intel: <u>SGX</u>, <u>TDX</u>
- IBM
- ARM

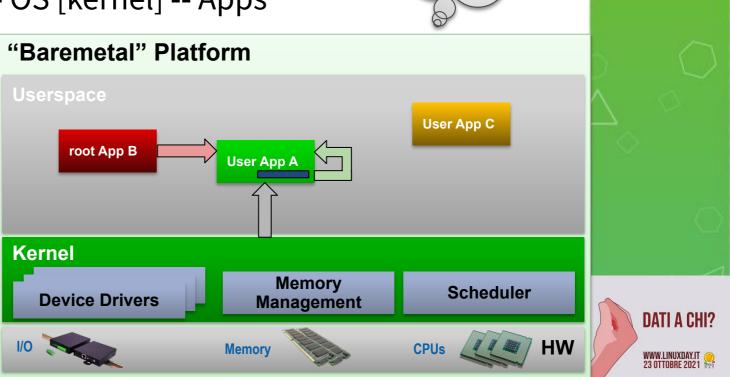
Encrypt Data in Memory / CPU


AMD, <u>https://developer.amd.com/sev/</u>

- SME: Secure Memory Encryption
 - Memory can be encrypted (All of it / only part of it)
 - \circ Only one encryption key
 - [Re]Generated at boot by the Secure Processor (SP)
 - protect "only" from <u>cold boot attacks</u>
- SEV: Secure Encripted Virtualization
 - Memory of the VMs can be encrypted
 - Different encryption keys, e.g., 1 per VM, managed by SP
 - VMs isolated from the hypervisor
 - VMs isolated from one another
- SNP: Secure Nested Paging
 - Implements memory (pages) ownership
 - Protect agains (malicious hypervisor) remap and replay attacks

- Green User's App A: User App A
 - Super Secret Password:
 - Password in A's memory: User App A
- Root App B: root App B
 - Legit access to memory: 介 ____
 - e.g., A accesses its own mem:
 - e.g., root's B accesses A's mem:
- "Rogue" access to memory:
 - e.g., non-root Yellow User's App C reads Green's A's mem:

User App A



"Baremetal" System

Simple, usual: HW -- OS [kernel] -- Apps

- A can read it's own memory
- C can't read
 A's memory
- B is root, can read A's memory
- kernel can read A's memory

All

Good...

Non-Live Demo

DATI A CHI?

WWW.LINUXDAY.IT

\$ cat pippo Print its own PID Ask for password (and #!/bin/bash (for convenience) store in plaintext :- 0) while true ; do clear echo "PID: \$\$" read -s -p "Input the Super Secret Password: " \setminus SUPER SECRET PASSWORD; echo sleep 30 echo "Super Secret Password is: \$SUPER SECRET PASSWORD" done After a little while, print the password ad go back to the beginning

Non-Live Demo

• As user (just start . /pippo, don't type anything else yet!):

\$./pippo
PID: 100894
Input the Super Secret Password:

• While ./pippo wait for me to type a password, as root:

```
# gcore -a 100894
# grep -a tumbleweed core.100894
#
```


Non-Live Demo

• Let's type "tumbleweed" (our super secure password! :-P)

\$./pippo
PID: 100894
Input the Super Secret Password:********

• ... And let's scan again:

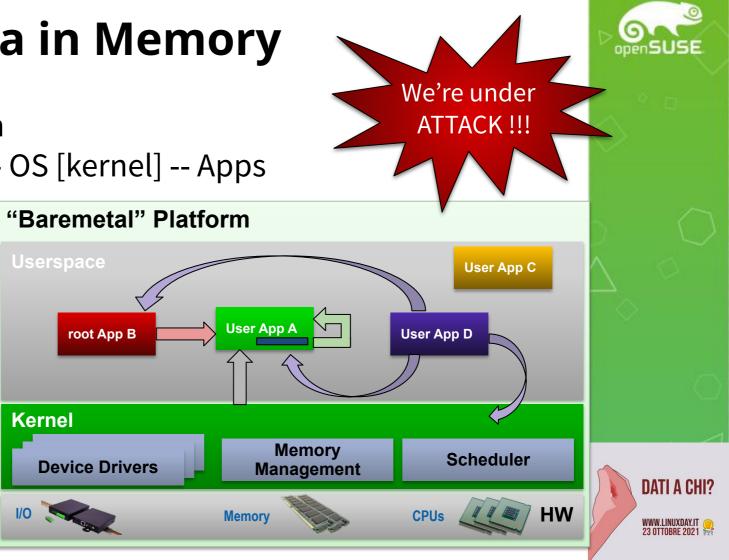
gcore 100894
grep -a tumbleweed core.100894
tumbleweed
tumbleweed
#

What Just Happened ?

What just happened:

- We started a program (./pippo), as normal user
- We dumped (with gcore -a) & scanned (with grep -a) its memory (program . /pippo, PID 100894) before any password was typed
- We looked for the string "tumbleweed" in the dump
- We found nothing
- We type "tumbleweed", as the password[*]
- We scan again
- We find the password in the process' memory

<u>All normal!</u>


"Baremetal" System

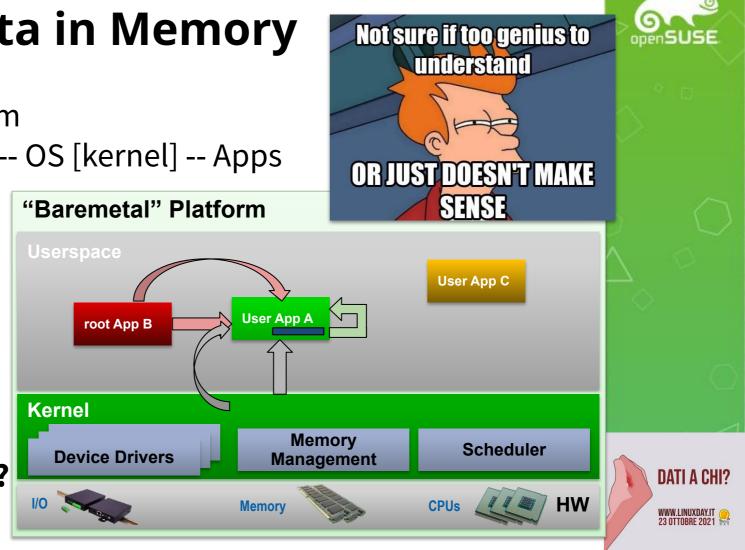
Simple, usual: HW -- OS [kernel] -- Apps

• Arrive D, evil! (compromised?)

- D attacks A \bigcirc
- D attacks \bigcirc root

D attacks Ο the kernel That's what security is for! :-)

"Baremetal" System

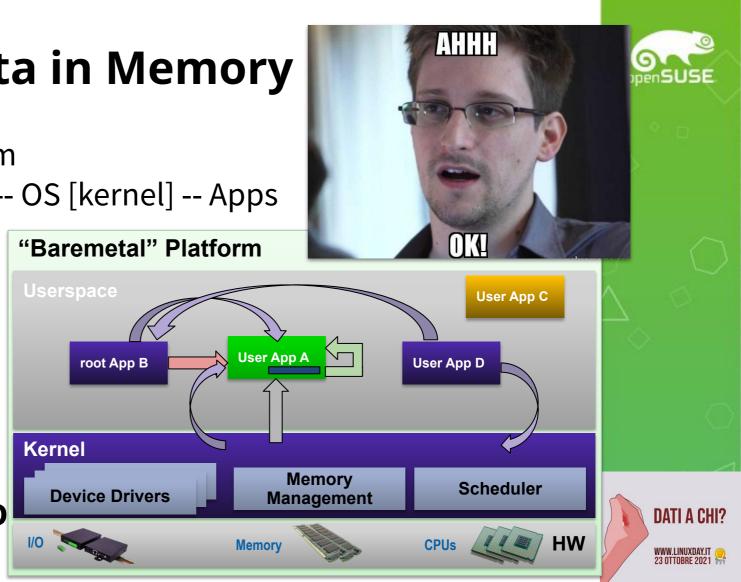

Simple, usual: HW -- OS [kernel] -- Apps

• What if:

Ο root attacks A

the kernel \bigcirc attacks A

How does this even make sense?

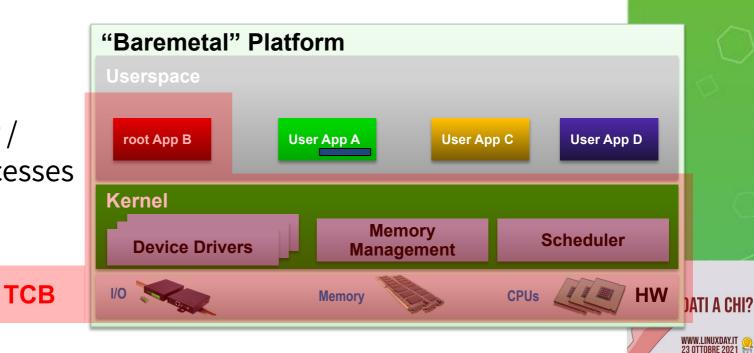

"Baremetal" System Simple, usual: HW -- OS [kernel] -- Apps

What if:

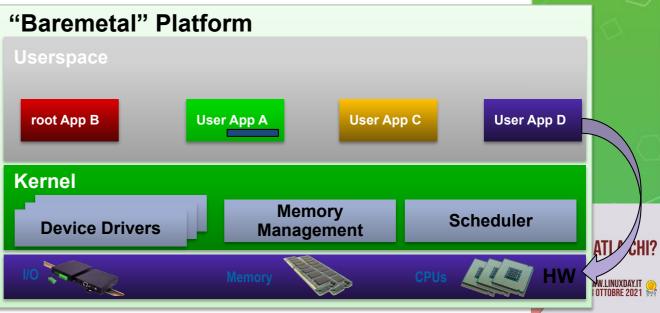
Ο root attacks A

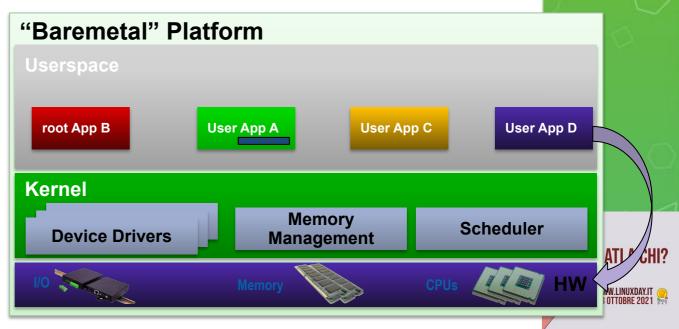
the kernel \bigcirc attacks A

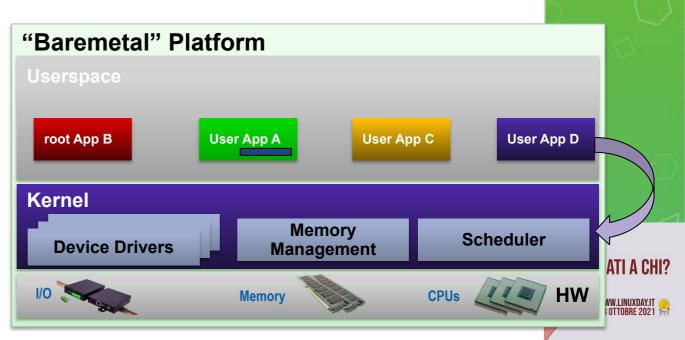
Maybe because compromised by D


"<u>The trusted computing base (TCB)</u> of a computer system is the set of all hardware, firmware, and/or software components that are critical to its security, in the sense that bugs or vulnerabilities occurring inside the TCB might jeopardize the security properties of the entire system."

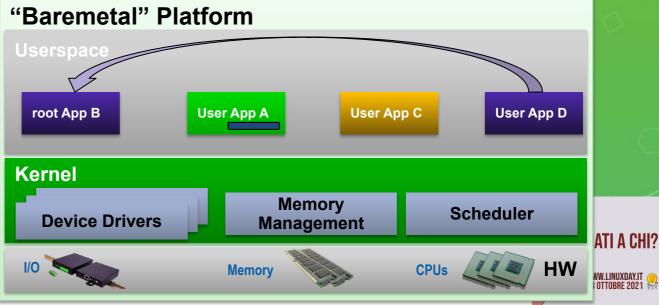
- It's "the good guys"
- If even 1 piece of the TCB is:
 - malicious
 - \circ compromised
- No point fighting any longer, **we lost** !!


- The smaller, the better
- On a baremetal system:
 - Hardware
 - Firmware
 - Kernel
 - o root user/
 root processes

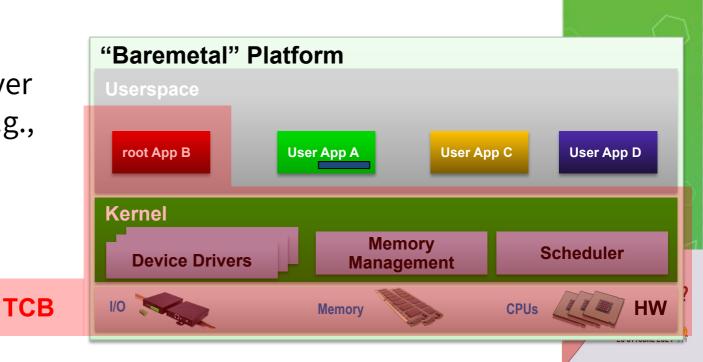

- On a baremetal system:
 - Hardware
 - D wins hardware (e.g., bugs that can lead to HW crashes)


- On a baremetal system:
 - Firmware
 - D win's firmware (e.g., Firmware backdoors)

- On a baremetal system:
 - Kernel
 - D win's the Kernel (e.g., Kernel/driver bugs)



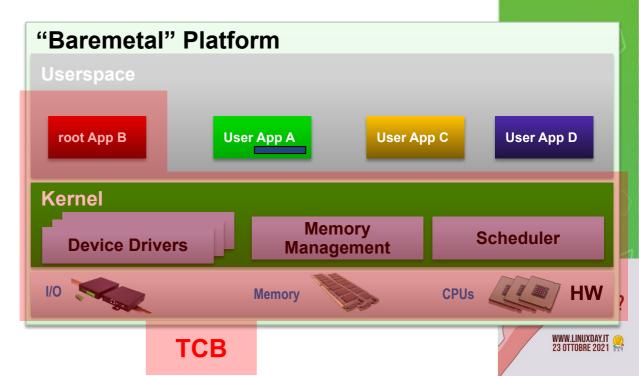
- On a baremetal system:
 - o root user / root processes
 - D win's becomes root (e.g., priv. escalation in system daemons)



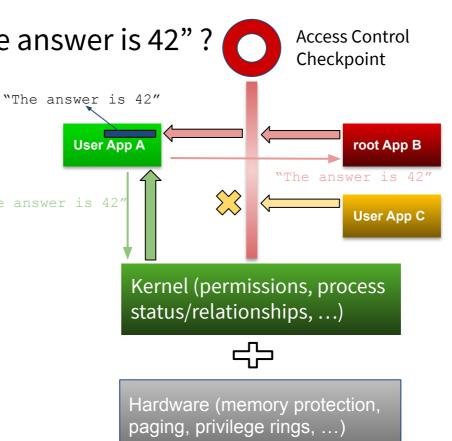
Who Owns The TCB?

Who is in charge of the components of the TCB

- Personal baremetal box/server
 - Me
- My company's baremetal box/server
 - My company (e.g., IT department)

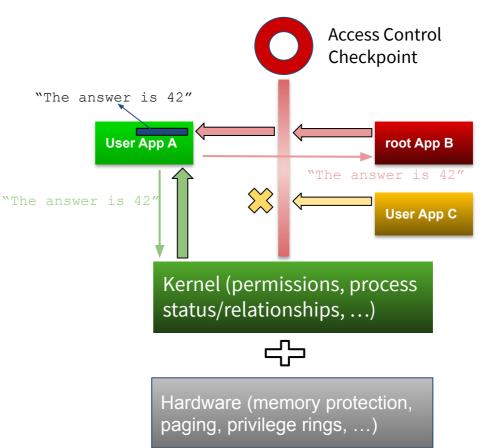


Whose Data Are Stolen?

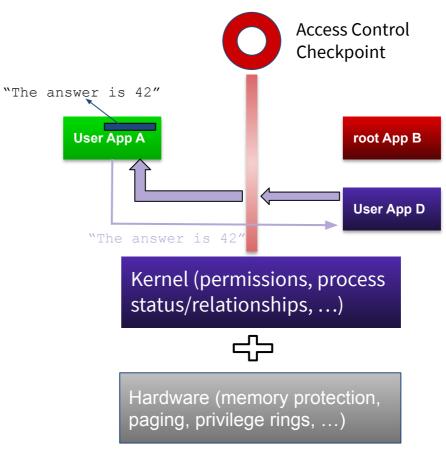

In case of breach in the TCB, what can the attacker steal?

- Personal baremetal box/server
 - My data
 - E.g.,passwords,
 credit cards, health,
 digital ID, ...
- My company's baremetal box/server
 - My company's data
 - E.g., financials, industrial secrets, ...

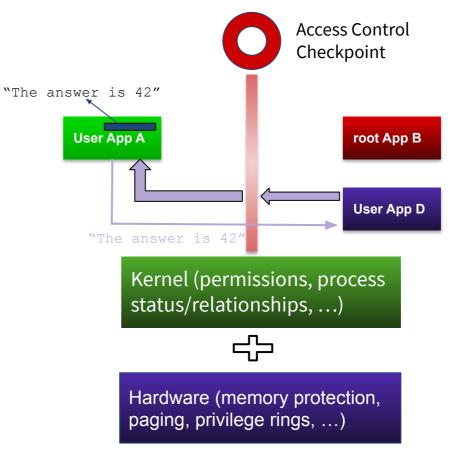
Who can read the secret "The answer is 42"?


- Kernel (i.e., software) enforces the access control
- With help from paging "The answer is 42" (i.e., hardware)

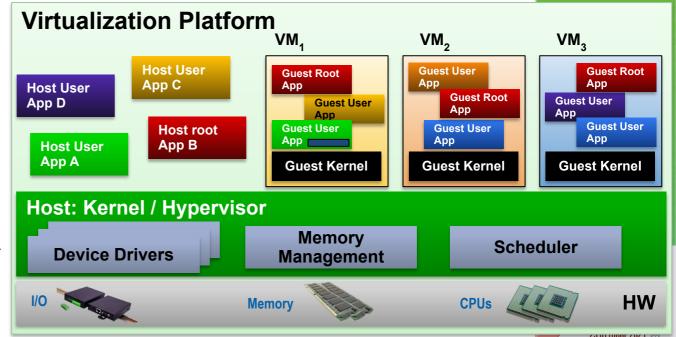
If either one fails...



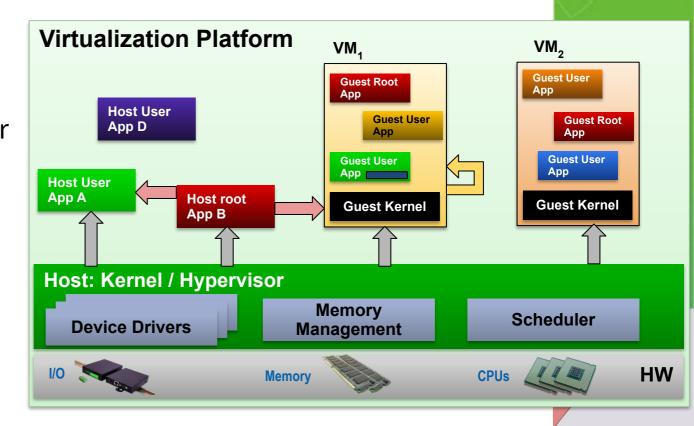
If either one fails...


• e.g., exploited Kernel bug

If either one fails...

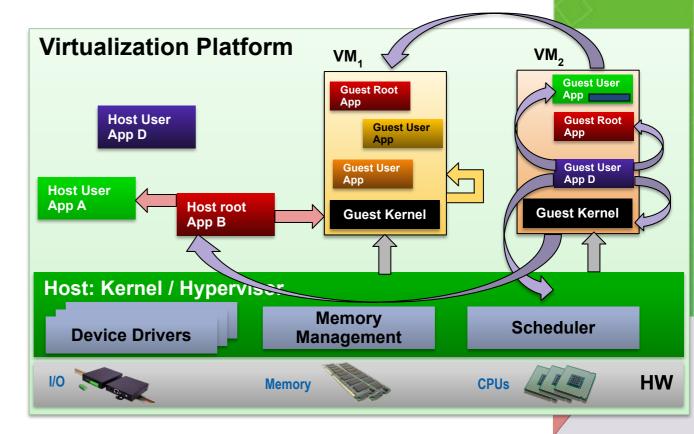

- e.g., exploited HW bug
 - see Spectre,
 Meltdown & Friends!

Enters Virtualization


- What was baremetal \Rightarrow Host
 - \circ Host Apps (root & user) are still there
- Kernel += Hypervisor
 - \circ VMs (= Guests)
 - VM hardware (virtual / emulated)
 - VM Kernel
 - VM user / root Apps

Virtualization: Legit Operations

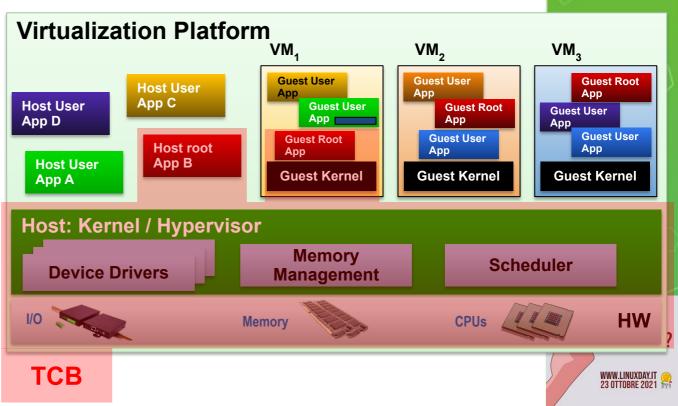
- Inside a VM:
 - same as on baremetal
- Host ⇔ VMs
 - Kernel/Hypervisor reads all Host Apps' and VMs' memory
 - Host root Apps reads all Host Apps' and VMs' memory

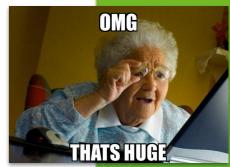


Virtualization: Attacks

openSUSE

- A Lot !!!
- VM2 Guest (evil) User App D can attack:
 - VM2 Guest Apps (root and user)
 - VM2 Guest Kernel
 - Host Kernel
 - \circ Other VMs
 - Host Apps (root and user)

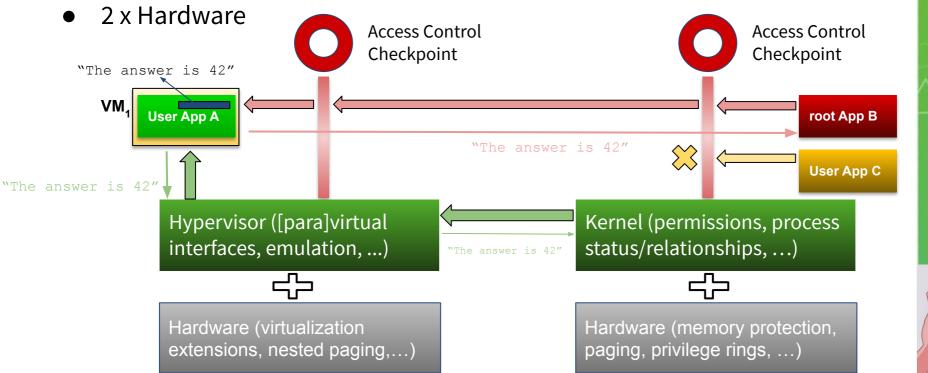



Virtualization: TCB

From the point of view of Guest User App A, in VM1 (where

the sensitive data are)

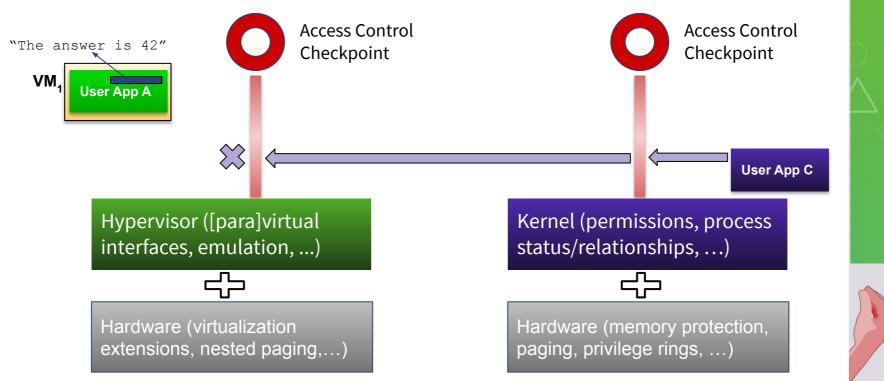
- Firmware
- Hardware
- Host Kernel / Hypervisor
- Host's root user & Apps
- VM1 Guest Kernel
- VM1 root user & Apps



Enforcing Memory Access Control: Virtualization

Who, from host, can read the secret "The answer is 42"?

• 2 x Software (Host Kernel, Hypervisor)

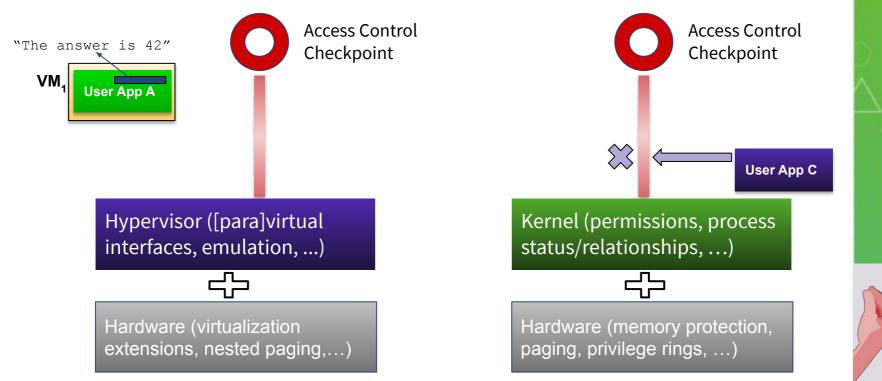


DATI A CHI?

Enforcing Memory Access Control: Virtualization

if one fails...

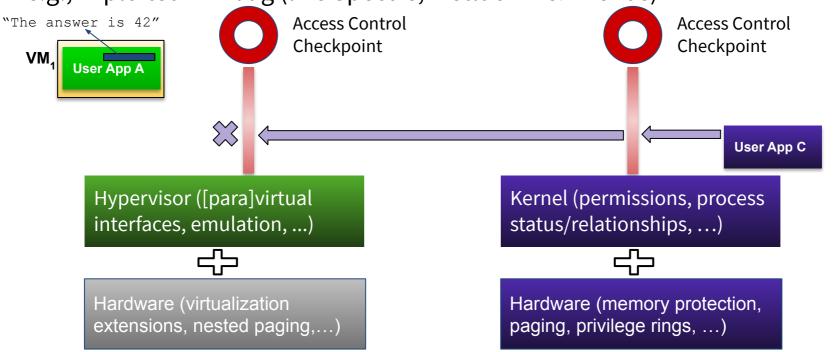
• e.g., Exploited kernel bug



DATI A CHI?

Enforcing Memory Access Control: Virtualization

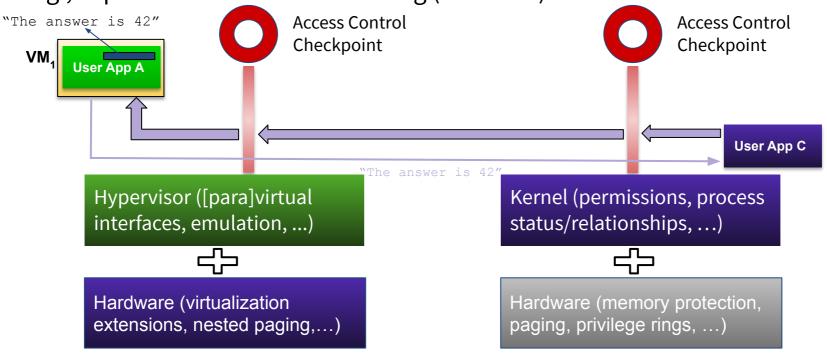
if another one fails...


• e.g., Exploited hypervisor bug

DATI A CHI?

Even if *two* fail...

- e.g., Exploited kernel bug
- e.g., Exploited HW bug (like Spectre, Metldown & Friends)



DATI A CHI?

WWW.LINUXDAY.IT

It must be at least two, and the "proper" twos, that fail...

- e.g., Exploited kernel bug
- e.g., Exploited virtualization HW bug (like L1TF)

It must be at least two, and the "propy" twos, that

ization

extensions, ested paging,...)

ration H

- e.g., Exploited kernel bug
- e.g., Exploited

HV

Hardware

"The answer is 42"

probability_of_happening--

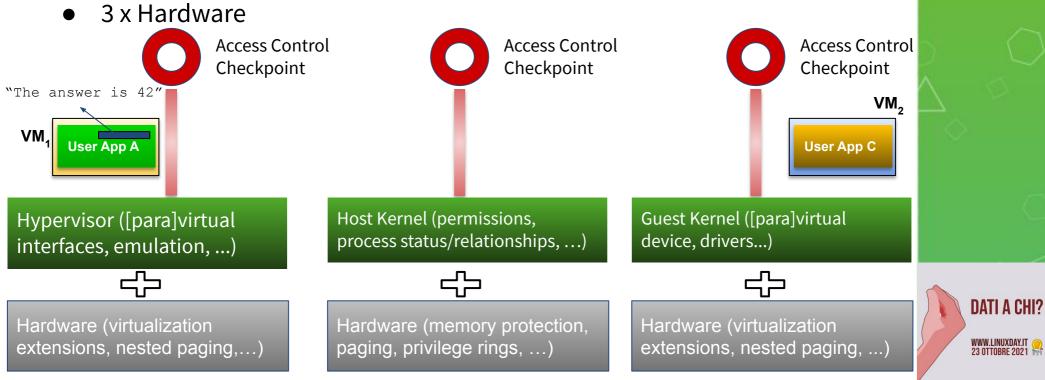
 That's why it makes sense to use VMs

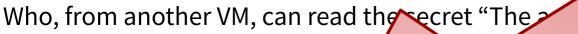
Hardware (memory protection, paging, privilege rings, ...)

 \sim

Star

rmissions, process


ionships, ...)


DATI A CHI?

User App C

Who, from another VM, can read the secret "The answer is 42"?

• 3 x Software (Host Kernel, Hypervisor, Guest kernel)

• 3 x Software (Host Kernel, Hyp

Acce

• 3 x Hardward

"The answer

User App

Hypervisor ([pap

interfaces, er

VM.

(probability_of_happening--)--

That's why it makes *even more* sense to use VMs

is 42" ?

Hardware (virtualization extensions, nested paging, ...)

Hardware (memory protection, paging, privilege rings, ...)

Hardware (virtualization extensions, nested paging, ...)

st Kernel ([para].

ce, drivers...)

WWW.LINUXDAY.IT

DATI A CHI?

VM₂

User App C

Who Owns The TCB, in Virtualization ?

Who is in charge of the components of the TCB

• Personal server(s) & VMs box/server

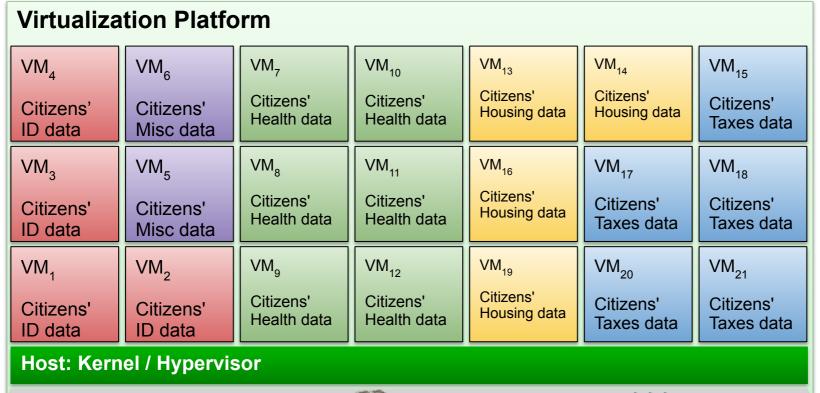
• Me

- My company's server(s) / private cloud & VMs
 - My company (e.g., IT department)
- Public Cloud (AWS, GCP, Azure)
 The Cloud provider
- Sensitive servers / private cloud & VMs
 - E.g., *Public Administrations*' server(s) / private cloud & VMs
 - PAs' (e.g., their IT departments)

DATI A CHI?

Public Cloud (AWS, GCP, Azure, ...)

Virtualization Platform VM₁₅ VM₄ VM_e VM₋ VM_{10} VM_{13} VM_{14} Customer Customer Customer Customer Customer Customer Customer A's data B's data C's data C's data E's data E's data E's data VM₁₆ **VM**₁₈ VM₂ VM_E VM。 VM₁₁ VM₁₇ Customer Customer Customer Customer Customer Customer Customer A's data B's data C's data C's data F's data F's data F's data VM₁₂ VM₂ VM VM₂₁ VM₁ VM₁₀ VM_{20} Customer Customer Customer Customer Customer Customer Customer D's data G's data A's data A's data C's data F's data G's data



HW

PA's Private / Hybrid Cloud

Memory

HW

CPUs

Whose Data Are Stolen?

In case of breach in the TCB, what can the attacker steal?

- Personal server(s) & VMs box/server
 - My data
- My company's server(s) / private cloud & VMs
 - My company's data
- Public Cloud (AWS, GCP, Azure)
 - All the Cloud Provider's customers and users
- Sensitive servers / private cloud & VMs
 - E.g., **Public Administrations**' server(s) / private cloud & VMs
 - o <u>All citizens</u>' data

DATI A CHI?

Public Cloud (AWS, GCP, Azure, ...)

YOU THINK THAT'S AIR YOU'RE BREATHING?

Virtualization Platform

VM ₄	VM ₆	VM ₇	VM ₁₀	VM ₁₃	VM ₁₄	VM ₁₅	
Citizens' A's data	Citizens' B's data	Citizens' C's data	Citizens' C's data	Citizens' E's data	Citizens' E's data	Citizens' E's data	Гн
VM ₃	VM ₅	VM ₈	VM ₁₁	VM ₁₆	VM ₁₇	VM ₁₈	co b
Citizens' A's data	Citizens' B's data	Citizens' C's data	Citizens' C's data	Citizens' F's data	Citizens' F's data	Citizens' F's data	
VM ₁	VM ₂	VM ₉	VM ₁₂	VM ₁₉	VM ₂₀	VM ₂₁	H m
Citizens' A's data	Citizens' A's data	Citizens' C's data	Citizens' D's data	Citizens' F's data	Citizens' G's data	Citizens' G's data	re A E
Host: Kernel / Hypervisor							2
1/0		Memory		(CPUs	нพ	

Hypervisor gets compromised, e.g., by successful attack

Hypervisor might be malicious <<Do you really trust Google, Amazon, Microsoft? Eh? Eh? Eh?>>

DATI A CHI?

WWW.LINUXDAY.IT 23 OTTOBRE 2021

Public Cloud (AWS, GCP, Azure, ...)

Virtualization Platform

VM ₄	VM ₆	VM ₇	VM ₁₀	VM ₁₃	VM ₁₄	VM ₁₅	
Citizens' A's data	Citizens' B's data	Citizens' C's data	Citizens' C's data	Citizens' E's data	Citizens' E's data	Citizens' E's data	
VM ₃	VM ₅	VM ₈	VM ₁₁	VM ₁₆	VM ₁₇	VM ₁₈	
Citizens' A's data	Citizens' B's data	Citizens' C's data	Citizens' C's data	Citizens' F's data	Citizens' F's data	Citizens' F's data	
VM ₁	VM ₂	VM ₉	VM ₁₂	VM ₁₉	VM ₂₀	VM ₂₁	
Citizens' A's data	Citizens' A's data	Citizens' C's data	Citizens' D's data	Citizens' F's data	Citizens' G's data	Citizens' G's data	
Heat Karnal / Hyperviser							

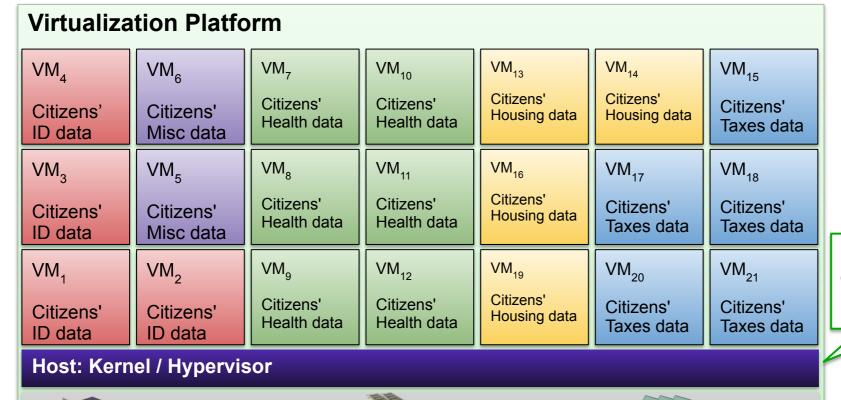
Host: Kernel / Hypervisor

HW

YOU THINK THAT'S AIR YOU'RE BREATHING?

> Hypervisor gets compromised, e.g., by successful attack

Hypervisor might be malicious <<Do you really trust Google, Amazon, Microsoft? Eh? Eh?>>



DATI A CHI?

PA's Private / Hybrid Cloud

Memory

1/0

Hypervisor gets compromised, e.g., by successful attack


HW

CPUs

DATI A CHI?

WWW.LINUXDAY.IT

PA's Private / Hybrid Cloud

Hypervisor gets compromised, e.g., by successful attack

> WWW.LINUXDAY.IT 🤗 23 ottobre 2021 🔛

DATI A CHI?

Reading Data from VMs' Memory

- Inside a VM (called TW)
- \$./pippo
 PID: 1820
 Input the Super Secret Password:
- On the host (as root)

ps aux | grep qemu | grep TW | awk '{print \$2}'
102198
gcore -a 102198
grep -a linuxday2021 core.102198
#

Reading Data from VMs' Memory

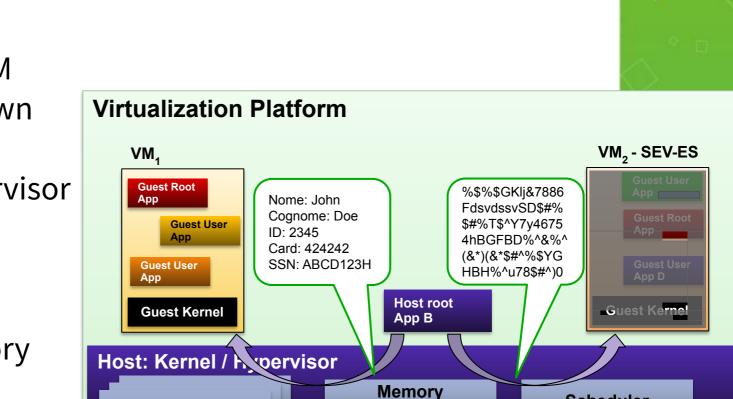
• This time, password is "linuxday2021"

\$./pippo
PID: 1820
Input the Super Secret Password: **********

• On the host (as root)

ps aux | grep qemu | grep TW | awk '{print \$2}'
102198
gcore -a 102198
grep -a linuxday2021 core.102198
linuxday2021
!Q#_[Secret Password: ecret Password: !Input the Super Secret Password:!
30EU0RD!SUPER_SECRET_PASSWORD!SUPER_SECRET_PASSWORD105BU@Ug!C'EU[SWORD1!
/usr/bin/sleep!sleep 30SWORD1A?U9BUs: \$AWEU[sword is:
\$SUPER_SECRET_PASSWORD"A#_[word is: \$SUPER_SECRET_PASSWORD1y1111:
"1!linuxday2021!190USWORD!

Encrypted Virtualization: Legit Ops


VM_2 is a SEV-ES VM

- Can read its own memory
- Kernel / Hypervisor can't read its memory
- Host root can't read its memory

Virtualization Platform VM₂ - SEV-ES VM. Guest Root App Host User App D **Guest User** App Guest User App Host root Guest Kernel **Guest Kernel** !!! App B !!! トレン Host: Kernel / Hypervisor Memory Scheduler **Device Drivers** Management 1/0 HW **CPUs** Memory **NB!!!**

Encryption

Memory

Management

SP

Encrypted Virtualization: Attacks

Device Drivers

1/0

VM_2 is a SEV-ES VM

- Can read its own memory
- Kernel / Hypervisor can't read its memory
- Host root cant read its memory

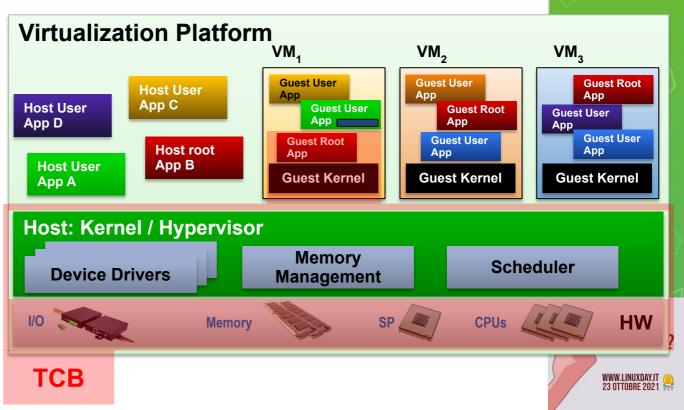
openSUSE

Scheduler

CPUs

HW

Encrypted Virtualization: TCB

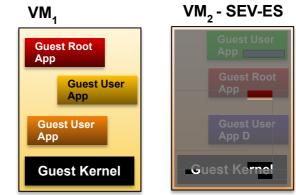

From the point of view of Guest User App A, in VM1 (where

the sensitive data are)

- Firmware
- Hardware
- Host Kernel / Hypervisor
 Host's root user &

Apps

- VM1 Guest Kernel
- VM1 root user & Apps


YOUJUST DO ALITTLE BETTER

EACHTIME

Encrypted Virtualization with SEV-ES

Note that:

- Not all VM₂ memory is encrypted
- Some small pieces are not encrypted
 - Necessary for communication between VM and hypervisor (for "implementing" virtualization)
 - The VM is in control and decides what is encrypted and what is not VM, VM,
- VM₁ is not encrypted
 - Encrypted and non-encrypted VMs
 can coexist on the same host

DATI A CHI?

WWW.LINUXDAY.IT

If Public Cloud Offers Encrypted Virt.

Virtualization Platform

VM ₄	VM ₆	VM ₇	VM ₁₀	VM ₁₃	VM ₁₄	VM ₁₅
Customer A's data	Customer B's data	Customer C's data	Customer C's data	Customer E's data	Customer E's data	Customer E's data
VM ₃	VM ₅	VM ₈	VM ₁₁	VM ₁₆	VM ₁₇	VM ₁₈
Customer A's data	Customer B's data	Customer C's data	Customer C's data	Customer F's data	Customer F's data	Customer F's data
VM ₁	VM ₂	VM ₉	VM ₁₂	VM ₁₉	VM ₂₀	VM ₂₁
Customer A's data	Customer A's data	Customer C's data	Customer D's data	Customer F's data	Customer G's data	Customer G's data
Host: Kernel / Hypervisor						

HW

If Public Cloud Offers Encrypted Vi

Virtualization Platform

VM ₄	VM ₆	VM ₇	VM ₁₀	VM ₁₃	VM ₁₄	VM ₁₅	
Customer A's data	Customer B's data	Customer C's data	Customer C's data	Customer E's data	Customer E's data	Customer E's data	ſ
VM ₃	VM ₅	VM ₈	VM ₁₁	VM ₁₆	VM ₁₇	VM ₁₈	c t
Customer A's data	Customer B's data	Customer C's data	Customer C's data	Customer F's data	Customer F's data	Customer F's data	ŀ
VM ₁	VM ₂	VM ₉	VM ₁₂	VM ₁₉	VM ₂₀	VM ₂₁	(
Customer A's dataCustomer C's dataCustomer D's dataCustomer F's dataCustomer G's dataCustomer G's data							F V V
Host: Kernel / Hypervisor							

YOU THINK THAT'S AIR YOU'RE BREATHING?

> Hypervisor gets compromised, e.g., by successful attack

<<Hypervisor is controlled by Cloud Provider... Who knows what they're up to ?!?!>>

DATI A CHI?

WWW.LINUXDAY.IT 23 OTTOBRE 2021

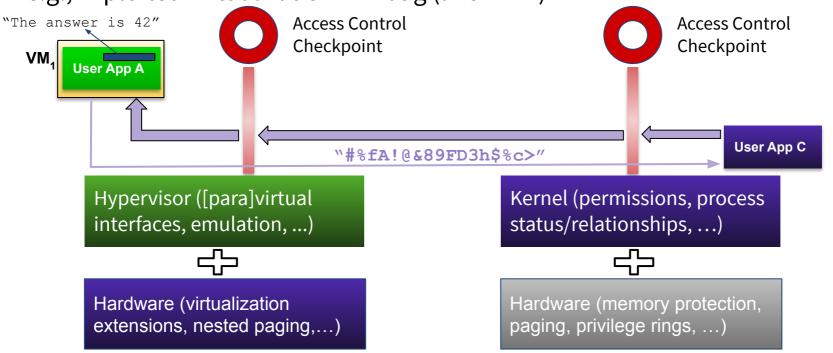
HW

If Public Cloud Offers Encrypted Vi

Virtualization Platform

VM_4	VM ₆	VM ₇	VM ₁₀	VM ₁₃	VM ₁₄	VM ₁₅
Citizens' A's data	Citizens' B's data	Citizens' C's data	Citizens' C's data	Citizens' E's data	Citizens' E's data	Citizens' E's data
VM ₃	VM ₅	VM ₈	VM ₁₁	VM ₁₆	VM ₁₇	VM ₁₈
Citizens' A's data	Citizens' B's data	Citizens' C's data	Citizens' C's data	Citizens' F's data	Citizens' F's data	Citizens' F's data
VM ₁	VM ₂	VM ₉	VM ₁₂	VM ₁₉	VM ₂₀	VM ₂₁
Citizens' A's data	Citizens' A's data	Citizens' C's data	Citizens' D's data	Citizens' F's data	Citizens' G's data	Citizens' G's data
Host: Kernel / Hypervisor						
1/0	-	Memory			CPUs	HW

lypervisor gets ompromised, e.g., y successful attack


<Hypervisor is ontrolled by Cloud Provider... Who nows what they're p to ?!?!>>

DATI A CHI?

WWW.LINUXDAY.IT 23 OTTOBRE 2021

Even if it is two, and the "proper" twos, that fail...

- e.g., Exploited kernel bug
- e.g., Exploited virtualization HW bug (like L1TF)

DATI A CHI?

WWW.LINUXDAY.IT

Reading Data from SEV-ES VMs' Memory

• Inside a VM (called TW-SEV-ES):

\$./pippo
PID: 1820
Input the Super Secret Password:

• On the host (as root)

ps aux | grep qemu | grep TW-SEV-ES | awk '{print \$2}'
102198
gcore -a 102198
grep -a GOLEM core.102198
#

Reading Data from SEV-ES VMs' Memory

• This time, as password, we type "GOLEM" [1]

\$./pippo
PID: 1820
Input the Super Secret Password: *****

• On the host (as root)

ps aux | grep qemu | grep TW-SEV-ES | awk '{print \$2}'
102198
gcore -a 102198
grep -a GOLEM core.102198
#

Hardware Prerequisites

Different CPU Generation, different Features:

- SEV
 - 1st Gen. AMD EPYC Processors (Naples)
 - <u>en.wikichip.org/wiki/amd/microarchitectures/zen</u>
- SEV-ES
 - 2nd Gen. AMD EPYC Processors (Rome)
 - <u>en.wikichip.org/wiki/amd/microarchitectures/zen_2</u>
- SEV-SNP
 - 3rd Gen. AMD EPYC Processors (Milan)
 - <u>en.wikichip.org/wiki/amd/microarchitectures/zen_3</u>
 From earlier *this* year

Software Prerequisites

Support for SEV & SEV-ES present in:

- Upstream projects:
 - <u>QEMU</u>: since **v6.0**
 - <u>OVMF</u>: since **Nov 2020**
 - <u>Libvirt</u>: since v7.5.0 (I think)
 - <u>Linux Kernel</u>, guest support (inside VM): since **v5.10**
 - <u>Linux Kernel</u>, KVM support(as host): since v5.11
- <u>openSUSE Tumbleweed</u>
 - full (host/guest) support since mid-May
- <u>openSUSE Leap 15.3</u> <u>SUSE Linux Enterprise Server 15 SP3</u>
 - SEV-ES guest support

SEV[-ES] Encrypted VMs on openSUSE Tumbleweed

- All that is necessary is there, in <u>openSUSE</u> <u>Tumbleweed[*]</u>
 - Host <u>kernel</u> support
 - Guest <u>kernel</u> support
 - <u>OVMF</u> support
 - <u>QEMU</u> support
 - <u>Libvirt</u> support

Other distros? Check the relevant docs for requirements (see previous slide)

- GUIs are still a bit lacking
 - E.g., <u>Virtual Machine Manager</u>
 - We still some manual tweaking from CLI / config files

Preparation: BIOS

- SEV & SEV-ES needs being enabled
- Number of <u>ASIDs</u> for SEV & SEV-ES must be set (> 1 !)

 Performance Prefetcher settings Core Watchdog RedirectForReturnDis Platform First Error Handling Core Performance Boost Global C-state Control 	[Auto] [Auto] [Auto] [Auto]	 SEV VMs using ASIDs below the SEV-ES ASID Space Limit must enable the SEV-ES feature. ASIDs from SEV-ES ASID Space Limit to (SEV ASID Count + 1) can only be used with SEV 	e
Power Supply Idle Control SEV ASID Count SEV-ES ASID Space Limit Control SEV-ES ASID Space Limit	[Auto] [509 ASIDs] [Manua1] 255	<pre> ++: Select Screen 11: Select Item Enter: Select +/-: Change Opt. F1: General Help F2: Previous Values</pre>	
Streaming Stores Control	[Auto]	F3: Optimized Defaults ▼ F4: Save & Exit ESC: Exit	

Preparation: BIOS

ASIDs = <u>Address Space IDentifiers</u>

- Used by hardware for identify processes or VMs, for performance reasons (e.g., <u>TLB</u> tagging)
- In SEV, used to select the right encryption key, when accessing encrypted memory.

Preparation: Software

Install the KVM stack:

- in a terminal
 - o zypper in -t pattern kvm_server
 kvm_tools
 zypper in virt-viewer
 - create a network bridge (not required, though)
- via <u>YaST</u>

o installs all the software and make the bridge

DATI A CHI?

Preparation: Software, via YaST

0	YaST Control Center @ sev.home.8by	tes.org (on sev.home.8bytes.org)	×		
Search Software	Network Services	NTP Configuration	YaST2 - virtualization	@ sev.home.8bytes.org	×
Hardware System Network Services Security and Users	Proxy Samba Server Security and Users	Remote Administration (VNC)	Choose Hypervisor(s) to insta Server: Minimal system to g Tools: Configure, manage a A disabled checkbox means	get a running Hypervisor nd monitor virtual machines	and a second
Virtualization Support Miscellaneous	AppArmor Security Center Virtualization	Firewall User and Group Management	Xen Hypervisor	☐ X <u>e</u> n tools	
	Create Virtual Machines	Install Hypervisor and Tools	KVM Hypervisor ☑ KVM server	KVM tools	
	Release Notes Miscellaneous Display the system's log (/var/log/messages) Filesystem Snapshots	Alternatives		Canc	
	Sendor Driver				DATI A CHI?

Preparation: Software

• Check:

```
myepic:~ # dmesg |grep SEV
```

- [13.890438] ccp 0000:23:00.1: SEV firmware update successful
- [13.986479] ccp 0000:23:00.1: SEV API:1.42 build:42
- 17.753095] SEV supported: 255 ASIDs
- 17.757527] SEV-ES supported: 254 ASIDs
- If no seeing "SEV supported: 255 ASIDs" try:

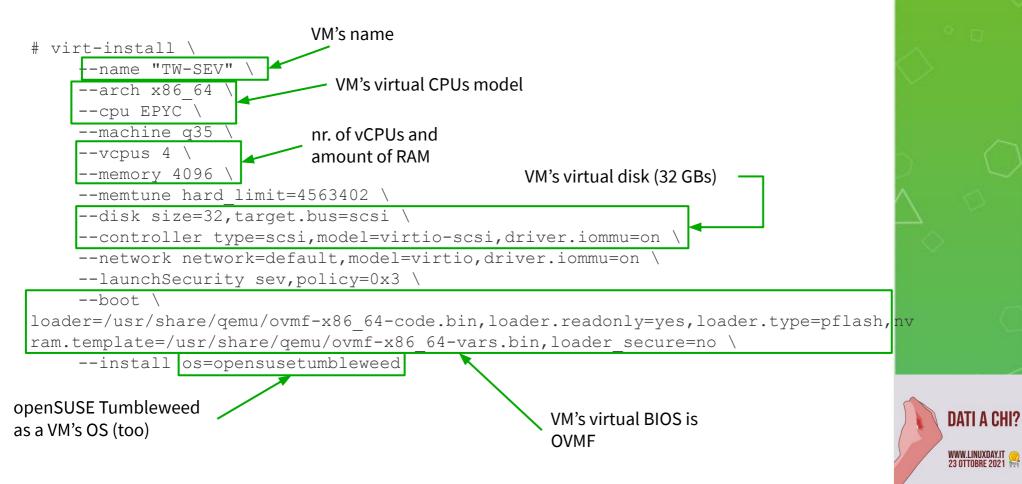
```
myepic:~ # rmmod kvm_amd
myepic:~ # modprobe kvm-amd sev=1 sev-es=1
myepic:~ # dmesg | grep SEV
[ 13.890438] ccp 0000:23:00.1: SEV firmware update successful
[ 13.986479] ccp 0000:23:00.1: SEV API:1.42 build:42
[ 17.753095] SEV supported: 255 ASIDs
[ 17.757527] SEV-ES supported: 254 ASIDs
```


Creating Your SEV VM

• From terminal:

- the following command will start a VM installation
- see: <u>Running Encrypted VMs on openSUSE Tumbleweed</u>

```
# virt-install \
     --arch x86 64 \setminus
     --name "TW-SEV" \
     --vcpus 4 \
     --cpu EPYC \
     --memory 4096 \
     --machine q35 \setminus
     --memtune hard limit=4563402 \
     --disk size=32,target.bus=scsi \
     --controller type=scsi, model=virtio-scsi, driver.iommu=on \
     --network network=default,model=virtio,driver.iommu=on \
     --launchSecurity sev, policy=0x3 \
     --boot \
loader=/usr/share/qemu/ovmf-x86 64-code.bin,loader.readonly=yes,loader.type=pflash,
nvram.template=/usr/share/qemu/ovmf-x86 64-vars.bin,loader secure=no \
     --install os=opensusetumbleweed
```



How About GUI?

Yes, but not possible to configure SEV[-ES] details...

File Virtual Machine View Send of consider Image: Consider Virtual Machine View Image: Consider Virtual Machine Manager Image: Consider Virtual Machine View Image: Consider Virtual Machine Manager Image: Consider Virtual Machine View Image: Consider Virtual Machine Manager Image: Consider Virtual Machine View Image: Consider Virtual Machine Manager Image: Consider Virtual Machine View Image: Consider Virtual Machine Manager Image: Consider Virtual Machine View Image: Consider Virtual Machine Image: Consider Virtual Machine View Image: Consider Virtual Machine Image: Consider Virtual Machine View Image: Consider Virtual Machine Image: Consider Virtual Machine View Image: Consider Virtual Machine Image: Consider Virtual Machine View Image: Consider Virtual Machine Image: Consider Virtual Machine View Image: Consider Virtual Machine Image: Consider Virtual Machine View Image: Consider Virtual Machine Image: Consider Virtual Machine Image: Consider Virtual Machine <tr< th=""><th></th><th></th><th>F</th><th>File Virtual Machine View</th><th>Send Key</th><th></th></tr<>			F	File Virtual Machine View	Send Key	
Derive Der	File Virtual Machine View S			e 🛐 🖻 🗉 🗖		٩(م م
Mouse Mouse Kyboard Display VNC Serial 1 Of hamed gemu-ga X Vdee bochs Controller Virtio SCS10 Controller Virtio SCS10 Controller Virtio SCS10 Controller Virtio SCS10 R NG /dev/urandom	Overview OS information Performance Overview Memory Boot Options SCSI Disk1 NIC :50:a8:0d		Virtual Machine Manager File Edit View Help Create a new virtual machine New VM	× rew ormation mance yry Dptions bisk 1	Details XML Basic Details TW-SEV-ES UUID: 2e72ca76-2aef-4813-beed-f4d9529c6695 Status: Running (Booted) Title:	
Add Hardware Cancel Apply Add Hardware Cancel Apply	Mouse Mouse Keyboard Display VNC Channel gemu-ga Video Bochs Controller VirtIO SCSI 0 Controller VIrtIO SCSI 0 Controller PCIe 0 Controller VIrtIO Serial 0 RNG /dev/urandom	≺Topology Manually set CPU topology Sockets: 4 - + Cores: 1 - +	Choose how you would like to install the operating system Local install media (ISO image or CDROM) Network Install (HTTP, HTTPS, or FTP) Import existing disk image Manual install Architecture options	y VNC 1 el qemu-ga Bochs blier VirtiO SCSI 0 oller JSB 0 oller SATA 0 oller PCIe 0 oller VirtiO Serial 0 dev/urandom	Hypervisor: KVM Architecture: x86_64 Emulator: /usr/bin/qemu-system-x86_64 Chipset: Q35 Firmware: UEFI x86_64: /usr/share/qemu/ovmf-x86_64-code.bin	

Generic Options

SEV Specific Options

SEV Specific Options

--memtune hard_limit=4563402

- How much memory can be locked (by QEMU) in RAM, for the VM
 - Locked == never swapped to disk
 - All memory of SEV[-ES] guests must be locked
- Set this a little higher than guest RAM
 - QEMU may need to allocate more (e.g., MMIO regions, etc)

Some More Details

driver.iommu=on

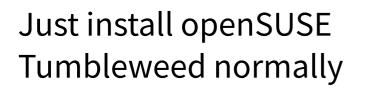
For devices (e.g., disk, network, ...)

- Otherwise, devices won't work inside the guest
 - VirtIO model: guest VirtIO drivers assume that the hypervisor can write to all of guest memory
 - But it can't! KVM and QEMU (on the host) cannot write to encrypted guest memory directly!
 - o iommu=on enables using Linux kernels's DMA-API
- DMA data in SEV[-ES] can now go through unencrypted bounce buffers

Some More Details

--launchSecurity sev,polocy=0x3

- Enables SEV for the guest
 - Policy: bit-field, for enabling/disabling features
 - 0x03 **SEV**
 - 0x07 **SEV-ES**
- Choose always 0×3 (SEV) and change it to (SEV-ES) later
 - Currently, no support for reboot an SEV-ES guest
 - The installer may want to reboot!


Some More Details

- --boot
- Specify the firmware image
 - An OVMF UEFI BIOS, with SEV-ES support, is required.
 - Currently we need to specify it manually

WWW.LI

Installation

Remember to enable hard disk encryption

Not strictly required... ... But it does not make sense to have memory encrypted and not disk!

Preparation Network Autosetup Installer Update Repositories Initialization Welcome Network Activation Svstem Analysis → Online Repositories Add-On Products Time Zone

Disk

User Settings stallation Installation Overview Perform Installation

Writing List of Online Repositories

- 1 Add repository: Main Repository (NON-OSS)
- Add repository: Main Repository (OSS) ->
- Add repository: Main Update Repository

Help

5

Initial layout proposed with the defa	ult Guided Setup settings.
Changes to partitioning:	
• Create GPT on /dev/sda • Create partition /dev/sda1 (51 • Create partition /dev/sda2 (29 • Create partition /dev/sda3 (2.(• 9 subvolume actions (<u>see deta</u>	.50 GiB) for / with btrfs 00 GiB) for swap
	Guided Setup
	Expert Partitioner 🔻

Enable Logical Volume Management (LVM)			
En <u>a</u> ble Disk Encryption			
Password			
•••••			
Verify Password			
••••••			
	<u>C</u> ancel	<u>B</u> ack	Kext

Installation: Hard Disk Encryption

For only typing the disk decryption password once, follow (post installation) either of these:

- <u>Setting up Full Disk Encryption on openSUSE</u> <u>Tumbleweed</u>
- SDB:Encrypted root file system

From SEV to SEV-ES

• virsh edit TW-SEV

opensuse Shutoff	Last edit was seconds ago	
TW-SEV Shutoff	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
6	TW-SEV on QEMU/KVM: virt136.devlab.prv.suse.com	×
File Virtual Machine View	Send Key	
		¢,
 Overview OS information Performance CPUs Memory Boot Options SCSI Disk1 	Details XML <domaileditubvirtxml <name>TW-SEV <uuid>elde71f7-f64f-4647-926e-6155075d2213</uuid> <metadata> <libosinfo:libosinfo xmlns:libosinfo="http://libosinfo.org/xmlns/libvirt/domain/1.0"> <libosinfo:libosinfo xmlns:libosinfo="http://libosinfo.org/xmlns/libvirt/domain/1.0"> <libosinfo:libosinfo< li=""> </libosinfo:libosinfo<></libosinfo:libosinfo></libosinfo:libosinfo></metadata></name></domaileditubvirtxml 	

From SEV to SEV-ES

• Change this:

<launchSecurity type="sev">
 <cbitpos>51</cbitpos>
 <reducedPhysBits>1</reducedPhysBits>
 <policy>0x0003</policy>
</launchSecurity>

• Into this:

<launchSecurity type="sev">
 <cbitpos>51</cbitpos>
 <reducedPhysBits>1</reducedPhysBits>
 <policy>0x0007</policy>
</launchSecurity>

WWW.LINUXDAY.IT

Did It Work ?

• SEV VM:

```
TW-SEV:~ # virt-what
kvm
TW-SEV:~ #
TW-SEV:~ # cat /etc/os-release | grep NAME
NAME="openSUSE Tumbleweed"
PRETTY NAME="openSUSE Tumbleweed"
CPE NAME="cpe:/o:opensuse:tumbleweed:20211019"
TW-SEV:~ #
TW-SEV:~ # dmesg | grep SEV
     0.065250] AMD Memory Encryption Features active: SEV
```


DATI A CHI?

WWW.LINUXDAY.IT

Did It Work ?

• SEV-ES VM:

```
TW-SEV-ES:~ # virt-what
kvm
TW-SEV-ES:~ #
TW-SEV-ES:~ # cat /etc/os-release | grep NAME
NAME="openSUSE Tumbleweed"
PRETTY_NAME="openSUSE Tumbleweed"
CPE NAME="cpe:/o:opensuse:tumbleweed:20211019"
TW-SEV-ES:~ #
TW-SEV-ES:~ # dmesg |grep SEV-ES
    0.067175] AMD Memory Encryption Features active: SEV SEV-ES
```


DATI A CHI?

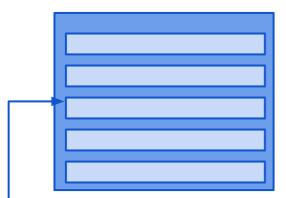
WWW.LINUXDAY.IT

In Summary

- With SEV[-ES] and (in a bit) SNP, VMs' memory can be encrypted
- Host / Hypervisor / Cloud Provider can't "spy" VMs
- We can stop having to trust the Host / the Hypervisor / the Cloud Provider
- Encryption happens in hardware
- We must continue to trust hardware
 Shall we?

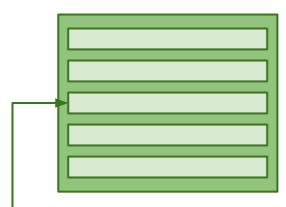
Some Links & References

- <u>Confidential Virtual Machines with AMD SEV-ES and</u> <u>openSUSE Tumbleweed - Joerg Rodel</u>
- <u>Confidential Virtual Machines with SEV and SNP Joerg</u> <u>Roedel</u>
- Running Encrypted VMs on openSUSE Tumbleweed
- <u>Setting up Full Disk Encryption on openSUSE Tumbleweed</u>



Some More Technical Details

Virtualization 101


VM

Virtual Registers

• State of the physical CPU's register while the VM is running

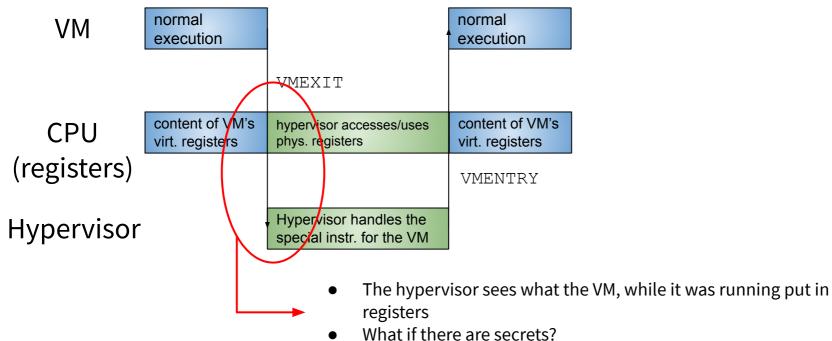
Physical CPU

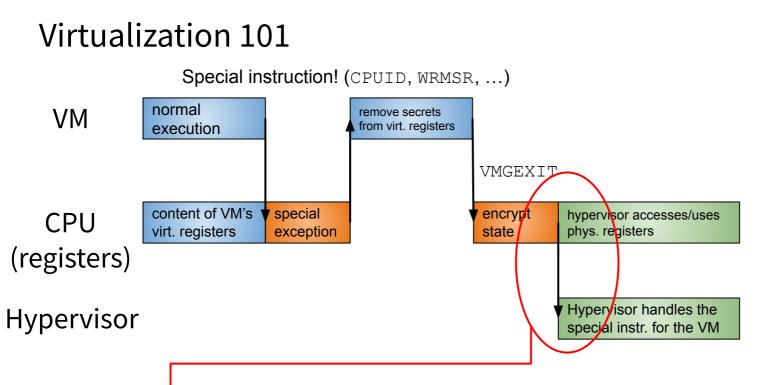
Registers

• Host data that the CPU elaborates

Virtualization 101

Special instruction! (CPUID, WRMSR, ...)


VM	normal execution		normal execution
		VMEXIT	
CPU	content of VM's virt. registers	hypervisor accesses/uses phys. registers	content of VM's virt. registers
(registers)			VMENTRY
Hypervisor		, Hypervisor handles the special instr. for the VM	


Virtualization 101

Special instruction! (CPUID, WRMSR, ...)

Some More Technical Details

- Hypervisor only sees what the VM left there
- Only what it needs for handling the special instruction/event
- hopefully, no secrets there!

