
Virtualization SW. Eng. @ SUSE

Dario Faggioli

dfaggioli@opensuse.org

dariof

@DarioFaggioli

@dfaggioli:matrix.org

Confidential Data
Inside Encypted VMs

About Myself

● Living:
○ Empoli (FI)
○ about.me/dario.faggioli

● FLOSS
○ LUG: GOLEM … all the times I can ;-P
○ openSUSE: user & contributor

● Education
○ 2008, Ph.D, ReTiS Lab, Scuola Sant’Anna

Real-Time System, Linux kernel scheduling
● Work

○ Since 2018, Virtualization Software Engineer @ SUSE
Xen, Linux kernel, KVM, QEMU, Libvirt
Working on scheduling, performance evaluation & tuning

https://about.me/dario.faggioli
https://blog.golem.linux.it/
https://www.opensuse.org/
https://retis.santannapisa.it/
https://www.santannapisa.it/it
https://www.suse.com/
https://xenproject.org/
https://www.kernel.org/
https://www.linux-kvm.org/page/Main_Page
https://www.qemu.org/
https://libvirt.org/

Confidential Computing

● What?
○ Keep [your] data confidential ~= secret

● From whom?
○ From everyone!

● How?
○ Encryption

● When?
○ Always

Encrypted Data

When? ⇒ Always!
● when data are stored on a hard drive

○ disk encryption (dm_crypt, …)
○ available since long time

● when data transit over networks
○ secure network comm. protocols (TLS, VPNs, …)
○ available since long time

Encrypted Data

When? ⇒ Always
● while sitting in the PC memory (RAM) ?

○ Err… Mmm…
● while being processed on the CPU?

○ Mmm… Err...

New technologies implemented by various
HW vendors to address this

Encrypting The Memory Live

In new enough (see later) AMD CPUs
● AMD Secure Processor

○ Additional ARM ® Cortex ® chip
○ Encrypt / Decrypt memory

accesses on-the-fly
■ AES, 128 bit keys

● AMD MEMORY ENCRYPTION
● EXTENDING SECURE ENCRYPTED VIRTUALIZATION WITH SEV-ES
● AMD-SEV SNP: Strengthening VM Isolation with Integrity

Protection and More

https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://events19.linuxfoundation.org/wp-content/uploads/2017/12/Extending-Secure-Encrypted-Virtualization-with-SEV-ES-Thomas-Lendacky-AMD.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf

Encrypt Data in Memory / CPU

New technologies implemented by HW vendors
● AMD:

○ SME: Secure Memory Encryption
○ SEV: Secure Encripted Virtualization
○ SNP: Secure Nested Paging

● Intel: SGX, TDX
● IBM
● ARM

https://en.wikichip.org/wiki/x86/sme
https://en.wikichip.org/wiki/x86/sme
https://www.phoronix.com/scan.php?page=news_item&px=AMD-SEV-SNP-Linux-RFC
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html

Encrypt Data in Memory / CPU

AMD, https://developer.amd.com/sev/
● SME: Secure Memory Encryption

○ Memory can be encrypted (All of it / only part of it)
○ Only one encryption key

■ [Re]Generated at boot by the Secure Processor (SP)
○ protect “only” from cold boot attacks

● SEV: Secure Encripted Virtualization
○ Memory of the VMs can be encrypted
○ Different encryption keys, e.g., 1 per VM, managed by SP

■ VMs isolated from the hypervisor
■ VMs isolated from one another

● SNP: Secure Nested Paging
○ Implements memory (pages) ownership
○ Protect agains (malicious hypervisor) remap and replay attacks

https://developer.amd.com/sev/
https://en.wikipedia.org/wiki/Cold_boot_attack

Reading Data in Memory

● Green User’s App A:
○ Super Secret Password:
○ Password in A’s memory:

● Root App B:
● Legit access to memory:

○ e.g., A accesses its own mem:
○ e.g., root’s B accesses A’s mem:

● “Rogue” access to memory:
○ e.g., non-root Yellow User’s App C

reads Green’s A’s mem:

User App A

User App A

root App B

root App B User App A

User App A

User App AUser App C

“Baremetal” Platform

Reading Data in Memory

“Baremetal” System
Simple, usual: HW -- OS [kernel] -- Apps
● A can read it’s

own memory
● C can’t read

A’s memory
● B is root, can

read A’s
memory

● kernel can read
A’s memory

Kernel

Device Drivers

HWMemory CPUsI/O

Memory
Management Scheduler

Userspace

User App A
root App B

User App C

All
 Good...

Non-Live Demo

$ cat pippo
#!/bin/bash
while true ; do
 clear
 echo "PID: $$"
 read -s -p "Input the Super Secret Password: " \
 SUPER_SECRET_PASSWORD; echo
 sleep 30
 echo "Super Secret Password is: $SUPER_SECRET_PASSWORD"
done

Print its own PID
(for convenience) Ask for password (and

store in plaintext :-O)

After a little while, print the password ad go
back to the beginning

Non-Live Demo

● As user (just start ./pippo, don’t type anything else yet!):

$./pippo
PID: 100894
Input the Super Secret Password:

● While ./pippo wait for me to type a password, as root:

gcore -a 100894
grep -a tumbleweed core.100894
#

Non-Live Demo

● Let’s type “tumbleweed” (our super secure password! :-P)

$./pippo
PID: 100894
Input the Super Secret Password:**********

● … And let’s scan again:

gcore 100894
grep -a tumbleweed core.100894
tumbleweed
tumbleweed
#

What Just Happened ?

What just happened:
● We started a program (./pippo), as normal user
● We dumped (with gcore -a) & scanned (with grep -a) its

memory (program ./pippo, PID 100894) before any password
was typed

● We looked for the string “tumbleweed” in the dump
● We found nothing
● We type “tumbleweed”, as the password[*]
● We scan again
● We find the password in the process’ memory
All normal! [*] trivial example, as password is stored in plaintext, but still...

“Baremetal” Platform

Reading Data in Memory

“Baremetal” System
Simple, usual: HW -- OS [kernel] -- Apps
● Arrive D, evil!

(compromised?)
○ D attacks A
○ D attacks

root
○ D attacks

the kernel
That’s what
 security is for! :-)

Kernel

Device Drivers

HWMemory CPUsI/O

Memory
Management Scheduler

Userspace

User App Aroot App B

User App C

User App D

We’re under
 ATTACK !!!

“Baremetal” Platform

Reading Data in Memory

“Baremetal” System
Simple, usual: HW -- OS [kernel] -- Apps
● What if:

○ root
attacks A

○ the kernel
attacks A

How does this
 even make sense?

Kernel

Device Drivers

HWMemory CPUsI/O

Memory
Management Scheduler

Userspace

User App Aroot App B

User App C

“Baremetal” Platform

Reading Data in Memory

“Baremetal” System
Simple, usual: HW -- OS [kernel] -- Apps
● What if:

○ root
attacks A

○ the kernel
attacks A

Maybe because
compromised by D

Kernel

Device Drivers

HWMemory CPUsI/O

Memory
Management Scheduler

Userspace

User App Aroot App B User App D

User App C

Trusted Computing Base (TCB)

“The trusted computing base (TCB) of a computer system is
the set of all hardware, firmware, and/or software
components that are critical to its security, in the sense that
bugs or vulnerabilities occurring inside the TCB might
jeopardize the security properties of the entire system.”

● It’s “the good guys”
● If even 1 piece of the TCB is:

○ malicious
○ compromised

● No point fighting any longer, we lost !!

https://en.wikipedia.org/wiki/Trusted_computing_base

Trusted Computing Base (TCB)

● The smaller, the better
● On a baremetal system:

○ Hardware
○ Firmware
○ Kernel
○ root user /

root processes

“Baremetal” Platform

Kernel

Device Drivers

HWMemory CPUsI/O

Memory
Management Scheduler

Userspace

User App Aroot App B User App C User App D

TCB

Trusted Computing Base (TCB)

● On a baremetal system:
○ Hardware

■ D wins hardware (e.g., bugs that can lead to
HW crashes)

“Baremetal” Platform

Kernel

Device Drivers

HWMemory CPUs

Memory
Management Scheduler

Userspace

User App Aroot App B User App C User App D

I/O

Trusted Computing Base (TCB)

● On a baremetal system:
○ Firmware

■ D win’s firmware (e.g., Firmware backdoors)

“Baremetal” Platform

Kernel

Device Drivers

HWMemory CPUs

Memory
Management Scheduler

Userspace

User App Aroot App B User App C User App D

I/O

“Baremetal” Platform

HW

Trusted Computing Base (TCB)

● On a baremetal system:
○ Kernel

■ D win’s the Kernel (e.g., Kernel/driver bugs)

Kernel

Device Drivers

Memory CPUs

Memory
Management Scheduler

Userspace

User App Aroot App B User App C User App D

I/O

● On a baremetal system:
○ root user / root processes

■ D win’s becomes root (e.g., priv. escalation in system
daemons)

“Baremetal” Platform

Kernel

HW

Trusted Computing Base (TCB)

Device Drivers

Memory CPUs

Memory
Management Scheduler

Userspace

User App Aroot App B User App C User App D

I/O

Who Owns The TCB ?

Who is in charge of the components of the TCB
● Personal baremetal box/server

○ Me
● My company’s

baremetal box/server
○ My company (e.g.,

IT department)

“Baremetal” Platform

Kernel

Device Drivers

HWMemory CPUsI/O

Memory
Management Scheduler

Userspace

User App Aroot App B User App C User App D

TCB

Whose Data Are Stolen ?

In case of breach in the TCB, what can the attacker steal?
● Personal baremetal box/server

○ My data
○ E.g.,passwords,

credit cards, health,
digital ID, ...

● My company’s
baremetal box/server
○ My company’s data
○ E.g., financials,

industrial secrets, ...

“Baremetal” Platform

Kernel

Device Drivers

HWMemory CPUsI/O

Memory
Management Scheduler

Userspace

User App Aroot App B User App C User App D

TCB

Enforcing Memory Access Control:
Baremetal
Who can read the secret “The answer is 42” ?
● Kernel (i.e., software)

enforces the access
control

● With help from paging
(i.e., hardware)

User App A root App B

User App C

Kernel (permissions, process
status/relationships, …)

Access Control
Checkpoint

Hardware (memory protection,
paging, privilege rings, …)

“The answer is 42”

“The answer is 42”

“The answer is 42”

Enforcing Memory Access Control:
Baremetal
If either one fails...

User App A root App B

User App C

Kernel (permissions, process
status/relationships, …)

Access Control
Checkpoint

Hardware (memory protection,
paging, privilege rings, …)

“The answer is 42”

“The answer is 42”

“The answer is 42”

Enforcing Memory Access Control:
Baremetal
If either one fails...
● e.g., exploited Kernel

bug
User App A root App B

User App D

Kernel (permissions, process
status/relationships, …)

Access Control
Checkpoint

Hardware (memory protection,
paging, privilege rings, …)

“The answer is 42”

“The answer is 42”

Enforcing Memory Access Control:
Baremetal
If either one fails...
● e.g., exploited HW bug

○ see Spectre,
Meltdown & Friends! User App A root App B

User App D

Kernel (permissions, process
status/relationships, …)

Access Control
Checkpoint

Hardware (memory protection,
paging, privilege rings, …)

“The answer is 42”

“The answer is 42”

● What was baremetal ⇒ Host
○ Host Apps (root & user) are still there

● Kernel += Hypervisor
○ VMs (= Guests)

■ VM hardware
(virtual /
emulated)

■ VM Kernel
■ VM user / root

Apps

Enters Virtualization

Virtualization Platform

Host: Kernel / Hypervisor

Device Drivers

HWMemory CPUsI/O

Memory
Management Scheduler

Guest Kernel

VM3

Guest Kernel

VM1

Guest Kernel

VM2

Guest User
App

Guest User
App

Guest Root
App

Guest User
App

Guest User
App

Guest Root
App

Guest User
App

Guest User
App

Guest Root
App

Host User
App A

Host root
App B

Host User
App CHost User

App D

Virtualization: Legit Operations

● Inside a VM:
○ same as on

baremetal
● Host ⇔ VMs

○ Kernel/Hypervisor
reads all Host
Apps’ and VMs’
memory

○ Host root Apps
reads all Host
Apps’ and VMs’
memory

Virtualization Platform

Host: Kernel / Hypervisor

Device Drivers

HWMemory CPUsI/O

Memory
Management Scheduler

Guest Kernel

VM1

Guest User
App

Guest User
App

Guest Root
App

Host User
App A Host root

App B

Host User
App D

Guest Kernel

VM2

Guest User
App

Guest User
App

Guest Root
App

Virtualization: Attacks

● A Lot !!!
● VM2 Guest (evil) User

App D can attack:
○ VM2 Guest Apps

(root and user)
○ VM2 Guest Kernel
○ Host Kernel
○ Other VMs
○ Host Apps (root

and user)

Virtualization Platform

Host: Kernel / Hypervisor

Device Drivers

HWMemory CPUsI/O

Memory
Management Scheduler

Guest Kernel

VM1

Guest User
App

Guest Root
App

Host User
App A Host root

App B Guest Kernel

VM2

Guest User
App

Guest User
App D

Guest Root
App

Guest User
App

Host User
App D

Virtualization: TCB

From the point of view of Guest User App A, in VM1 (where
the sensitive data are)
● Firmware
● Hardware
● Host Kernel /

Hypervisor
● Host’s root user &

Apps
● VM1 Guest Kernel
● VM1 root user &

Apps

Virtualization Platform

Host: Kernel / Hypervisor

Device Drivers

HWMemory CPUsI/O

Memory
Management Scheduler

Guest Kernel

VM3

Guest Kernel

VM1

Guest Kernel

VM2

Guest User
App

Guest User
App

Guest Root
App

Guest User
App

Guest User
App

Guest Root
App

Guest User
App

Guest User
App

Guest Root
App

Host User
App A

Host root
App B

Host User
App CHost User

App D

TCB

Who, from host, can read the secret “The answer is 42” ?
● 2 x Software (Host Kernel, Hypervisor)
● 2 x Hardware

VM1

Enforcing Memory Access Control:
Virtualization

User App A root App B

User App C

Kernel (permissions, process
status/relationships, …)

Access Control
Checkpoint

Hardware (memory protection,
paging, privilege rings, …)

“The answer is 42”

“The answer is 42”

“The answer is 42”

Hypervisor ([para]virtual
interfaces, emulation, ...)

Hardware (virtualization
extensions, nested paging,…)

Access Control
Checkpoint

“The answer is 42”

if one fails...
● e.g., Exploited kernel bug

VM1

Enforcing Memory Access Control:
Virtualization

User App A

User App C

Kernel (permissions, process
status/relationships, …)

Access Control
Checkpoint

Hardware (memory protection,
paging, privilege rings, …)

“The answer is 42”

Hypervisor ([para]virtual
interfaces, emulation, ...)

Hardware (virtualization
extensions, nested paging,…)

Access Control
Checkpoint

if another one fails...
● e.g., Exploited hypervisor bug

VM1

Enforcing Memory Access Control:
Virtualization

User App A

User App C

Kernel (permissions, process
status/relationships, …)

Access Control
Checkpoint

Hardware (memory protection,
paging, privilege rings, …)

“The answer is 42”

Hypervisor ([para]virtual
interfaces, emulation, ...)

Hardware (virtualization
extensions, nested paging,…)

Access Control
Checkpoint

Even if two fail...
● e.g., Exploited kernel bug
● e.g., Exploited HW bug (like Spectre, Metldown & Friends)

VM1

Enforcing Memory Access Control:
Virtualization

User App A

User App C

Kernel (permissions, process
status/relationships, …)

Access Control
Checkpoint

Hardware (memory protection,
paging, privilege rings, …)

“The answer is 42”

Hypervisor ([para]virtual
interfaces, emulation, ...)

Hardware (virtualization
extensions, nested paging,…)

Access Control
Checkpoint

It must be at least two, and the “proper” twos, that fail...
● e.g., Exploited kernel bug
● e.g., Exploited virtualization HW bug (like L1TF)

VM1

Enforcing Memory Access Control:
Virtualization

User App A

User App C

Kernel (permissions, process
status/relationships, …)

Access Control
Checkpoint

Hardware (memory protection,
paging, privilege rings, …)

“The answer is 42”

Hypervisor ([para]virtual
interfaces, emulation, ...)

Hardware (virtualization
extensions, nested paging,…)

Access Control
Checkpoint

“The answer is 42”

It must be at least two, and the “proper” twos, that fail...
● e.g., Exploited kernel bug
● e.g., Exploited virtualization HW bug (like L1TF)

VM1

Enforcing Memory Access Control:
Virtualization

User App A

User App C

Kernel (permissions, process
status/relationships, …)

Access Control
Checkpoint

Hardware (memory protection,
paging, privilege rings, …)

“The answer is 42”

Hypervisor ([para]virtual
interfaces, emulation, ...)

Hardware (virtualization
extensions, nested paging,…)

Access Control
Checkpoint

“The answer is 42”

probability_of_happening--
● That’s why it makes sense

to use VMs

Who, from another VM, can read the secret “The answer is 42” ?
● 3 x Software (Host Kernel, Hypervisor, Guest kernel)
● 3 x Hardware

VM1

Enforcing Memory Access Control:
Virtualization

User App A

Host Kernel (permissions,
process status/relationships, …)

Access Control
Checkpoint

Hardware (memory protection,
paging, privilege rings, …)

“The answer is 42”

Hypervisor ([para]virtual
interfaces, emulation, ...)

Hardware (virtualization
extensions, nested paging,…)

Access Control
Checkpoint

VM2

User App C

Guest Kernel ([para]virtual
device, drivers...)

Access Control
Checkpoint

Hardware (virtualization
extensions, nested paging, ...)

Who, from another VM, can read the secret “The answer is 42” ?
● 3 x Software (Host Kernel, Hypervisor, Guest kernel)
● 3 x Hardware

VM1

Enforcing Memory Access Control:
Virtualization

User App A

Host Kernel (permissions,
process status/relationships, …)

Access Control
Checkpoint

Hardware (memory protection,
paging, privilege rings, …)

“The answer is 42”

Hypervisor ([para]virtual
interfaces, emulation, ...)

Hardware (virtualization
extensions, nested paging,…)

Access Control
Checkpoint

VM2

User App C

Guest Kernel ([para]virtual
device, drivers...)

Access Control
Checkpoint

Hardware (virtualization
extensions, nested paging, ...)

(probability_of_happening--)--
● That’s why it makes even

more sense to use VMs

Who Owns The TCB, in Virtualization ?

Who is in charge of the components of the TCB
● Personal server(s) & VMs box/server

○ Me
● My company’s server(s) / private cloud & VMs

○ My company (e.g., IT department)
● Public Cloud (AWS, GCP, Azure)

○ The Cloud provider
● Sensitive servers / private cloud & VMs

E.g., Public Administrations’ server(s) / private cloud & VMs
○ PAs’ (e.g., their IT departments)

Public Cloud (AWS, GCP, Azure, …)

Virtualization Platform

Host: Kernel / Hypervisor

HWMemory CPUsI/O

VM1

Customer
A’s data

VM2

Customer
A’s data

VM3

Customer
A’s data

VM4

Customer
A’s data

VM5

Customer
B’s data

VM6

Customer
B’s data

VM7

Customer
C’s data

VM8

Customer
C’s data

VM9

Customer
C’s data

VM10

Customer
C’s data

VM11

Customer
C’s data

VM12

Customer
D’s data

VM13

Customer
E’s data

VM14

Customer
E’s data

VM15

Customer
E’s data

VM16

Customer
F’s data

VM19

Customer
F’s data

VM17

Customer
F’s data

VM18

Customer
F’s data

VM20

Customer
G’s data

VM21

Customer
G’s data

PA’s Private / Hybrid Cloud

Virtualization Platform

Host: Kernel / Hypervisor

HWMemory CPUsI/O

VM1

Citizens'
ID data

VM2

Citizens'
ID data

VM3

Citizens'
ID data

VM4

Citizens’
ID data

VM5

Citizens'
Misc data

VM6

Citizens'
Misc data

VM7

Citizens'
Health data

VM8

Citizens'
Health data

VM9

Citizens'
Health data

VM10

Citizens'
Health data

VM11

Citizens'
Health data

VM12

Citizens'
Health data

VM13

Citizens'
Housing data

VM14

Citizens'
Housing data

VM15

Citizens'
Taxes data

VM16

Citizens'
Housing data

VM19

Citizens'
Housing data

VM17

Citizens'
Taxes data

VM18

Citizens'
Taxes data

VM20

Citizens'
Taxes data

VM21

Citizens'
Taxes data

Whose Data Are Stolen ?

In case of breach in the TCB, what can the attacker steal?
● Personal server(s) & VMs box/server

○ My data
● My company’s server(s) / private cloud & VMs

○ My company’s data
● Public Cloud (AWS, GCP, Azure)

○ All the Cloud Provider’s customers and users
● Sensitive servers / private cloud & VMs

E.g., Public Administrations’ server(s) / private cloud & VMs
○ All citizens’ data

Public Cloud (AWS, GCP, Azure, …)

Virtualization Platform

Host: Kernel / Hypervisor

HWMemory CPUsI/O

VM1

Citizens'
A’s data

VM2

Citizens'
A’s data

VM3

Citizens'
A’s data

VM4

Citizens'
A’s data

VM5

Citizens'
B’s data

VM6

Citizens'
B’s data

VM7

Citizens'
C’s data

VM8

Citizens'
C’s data

VM9

Citizens'
C’s data

VM10

Citizens'
C’s data

VM11

Citizens'
C’s data

VM12

Citizens'
D’s data

VM13

Citizens'
E’s data

VM14

Citizens'
E’s data

VM15

Citizens'
E’s data

VM16

Citizens'
F’s data

VM19

Citizens'
F’s data

VM17

Citizens'
F’s data

VM18

Citizens'
F’s data

VM20

Citizens'
G’s data

VM21

Citizens'
G’s data

Hypervisor gets
compromised, e.g.,
by successful attack

Hypervisor might be
malicious <<Do you
really trust Google,
Amazon, Microsoft?
Eh? Eh? Eh?>>

Public Cloud (AWS, GCP, Azure, …)

Virtualization Platform

Host: Kernel / Hypervisor

HWMemory CPUsI/O

VM1

Citizens'
A’s data

VM2

Citizens'
A’s data

VM3

Citizens'
A’s data

VM4

Citizens'
A’s data

VM5

Citizens'
B’s data

VM6

Citizens'
B’s data

VM7

Citizens'
C’s data

VM8

Citizens'
C’s data

VM9

Citizens'
C’s data

VM10

Citizens'
C’s data

VM11

Citizens'
C’s data

VM12

Citizens'
D’s data

VM13

Citizens'
E’s data

VM14

Citizens'
E’s data

VM15

Citizens'
E’s data

VM16

Citizens'
F’s data

VM19

Citizens'
F’s data

VM17

Citizens'
F’s data

VM18

Citizens'
F’s data

VM20

Citizens'
G’s data

VM21

Citizens'
G’s data

Hypervisor gets
compromised, e.g.,
by successful attack

Hypervisor might be
malicious <<Do you
really trust Google,
Amazon, Microsoft?
Eh? Eh? Eh?>>

PA’s Private / Hybrid Cloud

Virtualization Platform

Host: Kernel / Hypervisor

HWMemory CPUsI/O

VM1

Citizens'
ID data

VM2

Citizens'
ID data

VM3

Citizens'
ID data

VM4

Citizens’
ID data

VM5

Citizens'
Misc data

VM6

Citizens'
Misc data

VM7

Citizens'
Health data

VM8

Citizens'
Health data

VM9

Citizens'
Health data

VM10

Citizens'
Health data

VM11

Citizens'
Health data

VM12

Citizens'
Health data

VM13

Citizens'
Housing data

VM14

Citizens'
Housing data

VM15

Citizens'
Taxes data

VM16

Citizens'
Housing data

VM19

Citizens'
Housing data

VM17

Citizens'
Taxes data

VM18

Citizens'
Taxes data

VM20

Citizens'
Taxes data

VM21

Citizens'
Taxes data

Hypervisor gets
compromised, e.g.,
by successful attack

PA’s Private / Hybrid Cloud

Virtualization Platform

Host: Kernel / Hypervisor

HWMemory CPUsI/O

VM1

Citizens'
ID data

VM2

Citizens'
ID data

VM3

Citizens'
ID data

VM4

Citizens’
ID data

VM5

Citizens'
Misc data

VM6

Citizens'
Misc data

VM7

Citizens'
Health data

VM8

Citizens'
Health data

VM9

Citizens'
Health data

VM10

Citizens'
Health data

VM11

Citizens'
Health data

VM12

Citizens'
Health data

VM13

Citizens'
Housing data

VM14

Citizens'
Housing data

VM15

Citizens'
Taxes data

VM16

Citizens'
Housing data

VM19

Citizens'
Housing data

VM17

Citizens'
Taxes data

VM18

Citizens'
Taxes data

VM20

Citizens'
Taxes data

VM21

Citizens'
Taxes data

Hypervisor gets
compromised, e.g.,
by successful attack

Reading Data from VMs’ Memory

● Inside a VM (called TW)

$./pippo
PID: 1820
Input the Super Secret Password:

● On the host (as root)

ps aux | grep qemu | grep TW | awk '{print $2}'
102198
gcore -a 102198
grep -a linuxday2021 core.102198
#

Reading Data from VMs’ Memory

● This time, password is “linuxday2021”

$./pippo
PID: 1820
Input the Super Secret Password: ************

● On the host (as root)
ps aux | grep qemu | grep TW | awk '{print $2}'
102198
gcore -a 102198
grep -a linuxday2021 core.102198
linuxday2021
!Q#_[Secret Password: ecret Password: !Input the Super Secret Password:!
30EU0RD!SUPER_SECRET_PASSWORD!SUPER_SECRET_PASSWORD105BU@Ug!C'EU[SWORD1!
/usr/bin/sleep!sleep 30SWORD1A?U9BUs: $A㒳EU[sword is:
$SUPER_SECRET_PASSWORD"A#_[word is: $SUPER_SECRET_PASSWORD1y11111:
"1!linuxday2021!190USWORD!

Encrypted Virtualization: Legit Ops

VM2 is a SEV-ES VM
● Can read its own

memory
● Kernel / Hypervisor

can’t read its
memory

● Host root can’t
read its memory

Virtualization Platform

Host: Kernel / Hypervisor

Device Drivers

HWI/O

Memory
Management Scheduler

Guest Kernel

VM1

Guest User
App

Guest Root
App

Host root
App B Guest Kernel

VM2 - SEV-ES

Guest User
App

Guest User
App D

Guest Root
App

Guest User
App

Host User
App D

!!!

!!!

Encryption

Memory CPUsSP
NB!!!

Encrypted Virtualization: Attacks

VM2 is a SEV-ES VM
● Can read its own

memory
● Kernel / Hypervisor

can’t read its
memory

● Host root cant
read its memory

Virtualization Platform

Host: Kernel / Hypervisor

Device Drivers

HWMemory CPUsI/O

Memory
Management Scheduler

Guest Kernel

VM1

Guest User
App

Guest Root
App

Host root
App B Guest Kernel

VM2 - SEV-ES

Guest User
App

Guest User
App D

Guest Root
App

Guest User
AppNome: John

Cognome: Doe
ID: 2345
Card: 424242
SSN: ABCD123H

%$%$GKlj&7886
FdsvdssvSD$#%
$#%T$^Y7y4675
4hBGFBD%^&%^
(&*)(&*$#^%$YG
HBH%^u78$#^)0

SP

Encrypted Virtualization: TCB

From the point of view of Guest User App A, in VM1 (where
the sensitive data are)
● Firmware
● Hardware
● Host Kernel /

Hypervisor
● Host’s root user &

Apps
● VM1 Guest Kernel
● VM1 root user &

Apps

Virtualization Platform

Host: Kernel / Hypervisor

Device Drivers

HWI/O

Memory
Management Scheduler

Guest Kernel

VM3

Guest Kernel

VM1

Guest Kernel

VM2

Guest User
App

Guest User
App

Guest Root
App

Guest User
App

Guest User
App

Guest Root
App

Guest User
App

Guest User
App

Guest Root
App

Host User
App A

Host root
App B

Host User
App CHost User

App D

TCB

Memory CPUsSP

Encrypted Virtualization with SEV-ES

Note that:
● Not all VM2 memory is encrypted
● Some small pieces are not encrypted

○ Necessary for communication between VM and
hypervisor (for “implementing” virtualization)

○ The VM is in control and decides what is encrypted
and what is not

● VM1 is not encrypted
○ Encrypted and non-encrypted VMs

can coexist on the same host
Guest Kernel

VM1

Guest User
App

Guest Root
App

Guest Kernel

VM2 - SEV-ES

Guest User
App

Guest User
App D

Guest Root
App

Guest User
App

If Public Cloud Offers Encrypted Virt.

Virtualization Platform

Host: Kernel / Hypervisor

HWMemory CPUsI/O

VM1

Customer
A’s data

VM2

Customer
A’s data

VM3

Customer
A’s data

VM4

Customer
A’s data

VM5

Customer
B’s data

VM6

Customer
B’s data

VM7

Customer
C’s data

VM8

Customer
C’s data

VM9

Customer
C’s data

VM10

Customer
C’s data

VM11

Customer
C’s data

VM12

Customer
D’s data

VM13

Customer
E’s data

VM14

Customer
E’s data

VM15

Customer
E’s data

VM16

Customer
F’s data

VM19

Customer
F’s data

VM17

Customer
F’s data

VM18

Customer
F’s data

VM20

Customer
G’s data

VM21

Customer
G’s data

If Public Cloud Offers Encrypted Virt.

Virtualization Platform

Host: Kernel / Hypervisor

HWMemory CPUsI/O

VM1

Customer
A’s data

VM2

Customer
A’s data

VM3

Customer
A’s data

VM4

Customer
A’s data

VM5

Customer
B’s data

VM6

Customer
B’s data

VM7

Customer
C’s data

VM8

Customer
C’s data

VM9

Customer
C’s data

VM10

Customer
C’s data

VM11

Customer
C’s data

VM12

Customer
D’s data

VM13

Customer
E’s data

VM14

Customer
E’s data

VM15

Customer
E’s data

VM16

Customer
F’s data

VM19

Customer
F’s data

VM17

Customer
F’s data

VM18

Customer
F’s data

VM20

Customer
G’s data

VM21

Customer
G’s data

Hypervisor gets
compromised, e.g.,
by successful attack

<<Hypervisor is
controlled by Cloud
Provider… Who
knows what they’re
up to ?!?!>>

If Public Cloud Offers Encrypted Virt.

Virtualization Platform

Host: Kernel / Hypervisor

HWMemory CPUsI/O

VM1

Citizens'
A’s data

VM2

Citizens'
A’s data

VM3

Citizens'
A’s data

VM4

Citizens'
A’s data

VM5

Citizens'
B’s data

VM6

Citizens'
B’s data

VM7

Citizens'
C’s data

VM8

Citizens'
C’s data

VM9

Citizens'
C’s data

VM10

Citizens'
C’s data

VM11

Citizens'
C’s data

VM12

Citizens'
D’s data

VM13

Citizens'
E’s data

VM14

Citizens'
E’s data

VM15

Citizens'
E’s data

VM16

Citizens'
F’s data

VM19

Citizens'
F’s data

VM17

Citizens'
F’s data

VM18

Citizens'
F’s data

VM20

Citizens'
G’s data

VM21

Citizens'
G’s data

Hypervisor gets
compromised, e.g.,
by successful attack

<<Hypervisor is
controlled by Cloud
Provider… Who
knows what they’re
up to ?!?!>>

Even if it is two, and the “proper” twos, that fail...
● e.g., Exploited kernel bug
● e.g., Exploited virtualization HW bug (like L1TF)

VM1

Enforcing Memory Access Control:
Encrypted Virtualization

User App A

User App C

Kernel (permissions, process
status/relationships, …)

Access Control
Checkpoint

Hardware (memory protection,
paging, privilege rings, …)

“The answer is 42”

Hypervisor ([para]virtual
interfaces, emulation, ...)

Hardware (virtualization
extensions, nested paging,…)

Access Control
Checkpoint

“#%fA!@&89FD3h$%c>”

Reading Data from SEV-ES VMs’
Memory
● Inside a VM (called TW-SEV-ES):

$./pippo
PID: 1820
Input the Super Secret Password:

● On the host (as root)

ps aux | grep qemu | grep TW-SEV-ES | awk '{print $2}'
102198
gcore -a 102198
grep -a GOLEM core.102198
#

Reading Data from SEV-ES VMs’
Memory
● This time, as password, we type “GOLEM” [1]

$./pippo
PID: 1820
Input the Super Secret Password: *****

● On the host (as root)

ps aux | grep qemu | grep TW-SEV-ES | awk '{print $2}'
102198
gcore -a 102198
grep -a GOLEM core.102198
#

Hardware Prerequisites

Different CPU Generation, different Features:
● SEV

○ 1st Gen. AMD EPYC Processors (Naples)
○ en.wikichip.org/wiki/amd/microarchitectures/zen

● SEV-ES
○ 2nd Gen. AMD EPYC Processors (Rome)
○ en.wikichip.org/wiki/amd/microarchitectures/zen_2

● SEV-SNP
○ 3rd Gen. AMD EPYC Processors (Milan)
○ en.wikichip.org/wiki/amd/microarchitectures/zen_3

■ From earlier this year

http://en.wikichip.org/wiki/amd/microarchitectures/zen
https://en.wikichip.org/wiki/amd/microarchitectures/zen_2
https://en.wikichip.org/wiki/amd/microarchitectures/zen_3

Software Prerequisites

Support for SEV & SEV-ES present in:
● Upstream projects:

○ QEMU: since v6.0
○ OVMF: since Nov 2020
○ Libvirt: since v7.5.0 (I think)
○ Linux Kernel, guest support (inside VM): since v5.10
○ Linux Kernel, KVM support(as host): since v5.11

● openSUSE Tumbleweed
○ full (host/guest) support since mid-May

● openSUSE Leap 15.3 - SUSE Linux Enterprise Server 15 SP3
○ SEV-ES guest support

https://www.qemu.org/
https://github.com/tianocore/edk2
https://libvirt.org/
https://www.kernel.org/
https://www.kernel.org/
https://get.opensuse.org/tumbleweed/
https://get.opensuse.org/leap/
https://www.suse.com/releasenotes/x86_64/SUSE-SLES/15-SP3/index.html

SEV[-ES] Encrypted VMs
on openSUSE Tumbleweed
● All that is necessary is there, in openSUSE Tumbleweed[*]

○ Host kernel support
○ Guest kernel support
○ OVMF support
○ QEMU support
○ Libvirt support

● GUIs are still a bit lacking
○ E.g., Virtual Machine Manager
○ We still some manual tweaking from CLI / config files

[*] with only small limitations, e.g., reboot not working for SEV-ES guests

Other distros? Check the relevant
docs for requirements (see
previous slide)

https://get.opensuse.org/tumbleweed/
https://www.kernel.org/
https://www.kernel.org/
https://github.com/tianocore/edk2
https://www.qemu.org/
https://libvirt.org/drvqemu.html
https://virt-manager.org/

Preparation: BIOS

● SEV & SEV-ES needs being enabled
● Number of ASIDs for SEV & SEV-ES must be set (> 1 !)

https://en.wikipedia.org/wiki/Translation_lookaside_buffer#PCID

Preparation: BIOS

ASIDs = Address Space IDentifiers
● Used by hardware for identify processes or VMs, for

performance reasons (e.g., TLB tagging)
● In SEV, used to select the right encryption key, when

accessing encrypted memory.

https://en.wikipedia.org/wiki/Translation_lookaside_buffer#PCID
https://en.wikipedia.org/wiki/Translation_lookaside_buffer

Preparation: Software

Install the KVM stack:
● in a terminal

○ zypper in -t pattern kvm_server
kvm_tools
zypper in virt-viewer

○ create a network bridge (not required, though)

● via YaST
○ installs all the software and make the bridge

https://en.opensuse.org/Portal:YaST

Preparation: Software, via YaST

Install the KVM stack:
● in a terminal

○ zypper in -t pattern kvm_server
kvm_tools

● via YaST

Preparation: Software

● Check:

● If no seeing ”SEV supported: 255 ASIDs” try:

Creating Your SEV VM

● From terminal:
○ the following command will start a VM installation
○ see: Running Encrypted VMs on openSUSE Tumbleweed

virt-install \
--arch x86_64 \
--name "TW-SEV" \
--vcpus 4 \
--cpu EPYC \
--memory 4096 \
--machine q35 \
--memtune hard_limit=4563402 \
--disk size=32,target.bus=scsi \
--controller type=scsi,model=virtio-scsi,driver.iommu=on \
--network network=default,model=virtio,driver.iommu=on \
--launchSecurity sev,policy=0x3 \
--boot \

loader=/usr/share/qemu/ovmf-x86_64-code.bin,loader.readonly=yes,loader.type=pflash,
nvram.template=/usr/share/qemu/ovmf-x86_64-vars.bin,loader_secure=no \

--install os=opensusetumbleweed

https://www.8bytes.org/posts/sev-es-on-tumbleweed/

How About GUI ?

Yes, but not possible to configure SEV[-ES] details...

Generic Options
virt-install \

--name "TW-SEV" \
--arch x86_64 \
--cpu EPYC \
--machine q35 \
--vcpus 4 \
--memory 4096 \
--memtune hard_limit=4563402 \
--disk size=32,target.bus=scsi \
--controller type=scsi,model=virtio-scsi,driver.iommu=on \
--network network=default,model=virtio,driver.iommu=on \
--launchSecurity sev,policy=0x3 \
--boot \

loader=/usr/share/qemu/ovmf-x86_64-code.bin,loader.readonly=yes,loader.type=pflash,nv
ram.template=/usr/share/qemu/ovmf-x86_64-vars.bin,loader_secure=no \

--install os=opensusetumbleweed

VM’s name

VM’s virtual CPUs model

nr. of vCPUs and
amount of RAM

VM’s virtual disk (32 GBs)

VM’s virtual BIOS is
OVMF

openSUSE Tumbleweed
as a VM’s OS (too)

SEV Specific Options
virt-install \

--name "TW-SEV" \
--arch x86_64 \
--cpu EPYC \
--machine q35 \
--vcpus 4 \
--memory 4096 \
--memtune hard_limit=4563402 \
--disk size=32,target.bus=scsi \
--controller type=scsi,model=virtio-scsi,driver.iommu=on \
--network network=default,model=virtio,driver.iommu=on \
--launchSecurity sev,policy=0x3 \
--boot \

loader=/usr/share/qemu/ovmf-x86_64-code.bin,loader.readonly=yes,loader.type=pflash,nv
ram.template=/usr/share/qemu/ovmf-x86_64-vars.bin,loader_secure=no \

--install os=opensusetumbleweed

4563402 KB = 4 GB + 360 MB
“just a bit more”™ ® than the VM’s RAM

iommu=on required for DMA to work
(via unencrypted bounce-buffers)

the proper firmware (i.e, one with SEV[-ES] support)
binary needs being specified explicitly

Where we say we want SEV

VM will see an “emulated” EPYC vCPU

SEV Specific Options

--memtune hard_limit=4563402

● How much memory can be locked (by QEMU) in
RAM, for the VM
○ Locked == never swapped to disk
○ All memory of SEV[-ES] guests must be locked

● Set this a little higher than guest RAM
○ QEMU may need to allocate more

(e.g., MMIO regions, etc)

Some More Details

driver.iommu=on

For devices (e.g., disk, network, …)
● Otherwise, devices won’t work inside the guest

○ VirtIO model: guest VirtIO drivers assume that the
hypervisor can write to all of guest memory
■ But it can’t! KVM and QEMU (on the host) cannot write

to encrypted guest memory directly!
○ iommu=on enables using Linux kernels’s DMA-API

● DMA data in SEV[-ES] can now go through unencrypted
bounce buffers

Some More Details

--launchSecurity sev,polocy=0x3

● Enables SEV for the guest
○ Policy: bit-field, for enabling/disabling features
○ 0x03 SEV
○ 0x07 SEV-ES

● Choose always 0x3 (SEV) and change it to (SEV-ES) later
○ Currently, no support for reboot an SEV-ES guest
○ The installer may want to reboot!

Some More Details

--boot … … …
● Specify the firmware image

○ An OVMF UEFI BIOS, with SEV-ES support, is
required.

○ Currently we need to specify it manually

Installation

Just install openSUSE
Tumbleweed normally

Remember to enable
hard disk encryption

Not strictly required…
… But it does not make
sense to have memory
encrypted and not disk!

Installation: Hard Disk Encryption

Installation: Hard Disk Encryption

For only typing the disk decryption password once,
follow (post installation) either of these:
● Setting up Full Disk Encryption on openSUSE

Tumbleweed
● SDB:Encrypted root file system

https://www.8bytes.org/posts/opensuse-full-disk-encryption/
https://www.8bytes.org/posts/opensuse-full-disk-encryption/
https://en.opensuse.org/SDB:Encrypted_root_file_system#Avoiding_to_type_the_passphrase_twice

From SEV to SEV-ES

● virsh edit TW-SEV
●

From SEV to SEV-ES

● Change this:

 <launchSecurity type="sev">
 <cbitpos>51</cbitpos>
 <reducedPhysBits>1</reducedPhysBits>
 <policy>0x0003</policy>
 </launchSecurity>

● Into this:

 <launchSecurity type="sev">
 <cbitpos>51</cbitpos>
 <reducedPhysBits>1</reducedPhysBits>
 <policy>0x0007</policy>
 </launchSecurity>

Did It Work ?

● SEV VM:

Did It Work ?

● SEV-ES VM:

In Summary

● With SEV[-ES] and (in a bit) SNP, VMs’ memory can
be encrypted

● Host / Hypervisor / Cloud Provider can’t “spy” VMs
● We can stop having to trust the Host / the

Hypervisor / the Cloud Provider
● Encryption happens in hardware
● We must continue to trust hardware

○ Shall we?

Some Links & References

● Confidential Virtual Machines with AMD SEV-ES and
openSUSE Tumbleweed - Joerg Rodel

● Confidential Virtual Machines with SEV and SNP - Joerg
Roedel

● Running Encrypted VMs on openSUSE Tumbleweed
● Setting up Full Disk Encryption on openSUSE Tumbleweed

https://www.youtube.com/watch?v=XwHa8ausVkA
https://www.youtube.com/watch?v=XwHa8ausVkA
https://www.youtube.com/watch?v=fBG_vsSS21U
https://www.youtube.com/watch?v=fBG_vsSS21U
https://www.8bytes.org/posts/sev-es-on-tumbleweed/
https://www.8bytes.org/posts/opensuse-full-disk-encryption/

Some More Technical Details

Virtualization 101

VM Physical CPU

Registers
● Host data that the

CPU elaborates

Virtual Registers
● State of the physical CPU’s

register while the VM is
running

Some More Technical Details

Virtualization 101

VM

CPU
(registers)

Hypervisor

normal
execution

Special instruction! (CPUID, WRMSR, …)

Hypervisor handles the
special instr. for the VM

content of VM’s
virt. registers

hypervisor accesses/uses
phys. registers

VMEXIT

normal
execution

VMENTRY

content of VM’s
virt. registers

Some More Technical Details

Virtualization 101

VM

CPU
(registers)

Hypervisor

normal
execution

Special instruction! (CPUID, WRMSR, …)

Hypervisor handles the
special instr. for the VM

content of VM’s
virt. registers

hypervisor accesses/uses
phys. registers

VMEXIT

normal
execution

VMENTRY

content of VM’s
virt. registers

● The hypervisor sees what the VM, while it was running put in
registers

● What if there are secrets?

Some More Technical Details

Virtualization 101

VM

CPU
(registers)

Hypervisor

normal
execution

Special instruction! (CPUID, WRMSR, …)

Hypervisor handles the
special instr. for the VM

content of VM’s
virt. registers

hypervisor accesses/uses
phys. registers

VMGEXIT

special
exception

remove secrets
from virt. registers

encrypt
state

● Hypervisor only sees what the VM left there
● Only what it needs for handling the special instruction/event
● hopefully, no secrets there!

